1、论文题目:Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation(HCN)
时间:2018年
主要创新:这项任务最关键的因素在于两个方面:关节共现的帧内表示和骨架时间演化的帧间表示。本文提出了一种端到端卷积共现特征学习框架。共现特征采用分层方法学习,其中不同层次的上下文信息逐渐聚合。首先对每个关节的点级信息进行独立编码。然后将它们组合成时空域的语义表示。具体而言,我们引入了一种全局空间聚合方案,该方案能够学习优于局部聚合的联合共现特征。此外,原始骨架坐标及其时间差与双流范式相结合。
具体工作:
我们建议使用CNN模型从骨架数据中学习全局共现,该模型优于局部共现
•我们设计了一种新型的端到端分层特征学习网络,其中特征从点级特征逐渐聚合到全局共现特征
•我们全面利用多人特征融合策略,使我们的网络能够很好地扩展到可变人数
•提议的框架在动作识别和检测任务的基准上优于所有现有的最先进方法
他这里是把原生的骨架序列和骨架运动序列分别送入两个相同网络中去,然后在Conv4以