1. 背景知识
在深度学习的优化过程中,梯度下降法(Gradient Descent, GD)是最基本的方法。然而,基本的梯度下降法在实际应用中存在收敛速度慢、容易陷入局部最小值以及在高维空间中振荡较大的问题。为了解决这些问题,人们提出了动量法(Momentum)。
2. 动量法的概念
动量(Momentum)最初是一个物理学概念,表示物体的质量与速度的乘积。它的方向与速度的方向相同,并遵循动量守恒定律。尽管深度学习中的动量与物理学中的动量并不完全相同,但它们都强调了一个概念:在运动方向上保持运动的趋势,从而加速收敛。
3. 动量法在深度学习中的应用
在深度学习中,动量法通过记录梯度的增量并将其与当前梯度相加,来平滑梯度下降的路径。这意味着在每一步的迭代中,不仅考虑当前的梯度,还考虑之前梯度的累积效果。
动量法的更新公式如下:
\[ v_t = \beta v_{t-1} + (1 - \beta) \nabla L(w_t) \]
\[ w_{t+1} = w_t - \alpha v_t \]
其中:
- \( v_t \) 是动量项,记录了之前梯度的累积。
- \( \beta \) 是动量参数,控制动量项的衰减,一般取值为0.9。
- \( \nabla L(w_t) \) 是当前参数的梯度。
- \( \alpha \) 是学习率。
4. 动量法的优点
1. 加速收敛:动量法通过积累之前的梯度信息,使得优化过程更为顺畅,避免了曲折路径,提高了收敛速度。
2. 跳过局部最小值:由于动量的累积作用&#x