warmup lr 策略-一种学习率预热的方法

目的(效果):
模型初始训练时,模型的权重是随机初始化的,初始学习率太大,可能会导致模型的震荡(不稳定),选择学习率预热方法,在初始的几个epoch或者是steps内用一个比较小的学习率,训练完制定的epoch或者steps之后恢复设置的初始学习率

为了防止从较小学习率到指定的初始学习率变化较大引起误差增大。gradual warmup可以缓解这个问题,通过每个steps逐渐增大lr,知道达到指定的初始学习率后再开始学习率的下降。

在哪些场景带来的收益较大:
1.当网络非常容易出现nan时,采用warm up策略,可以使网络可以正常收敛
2.当训练集损失很低,但是测试集损失很大,准确率较低时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值