目的(效果):
模型初始训练时,模型的权重是随机初始化的,初始学习率太大,可能会导致模型的震荡(不稳定),选择学习率预热方法,在初始的几个epoch或者是steps内用一个比较小的学习率,训练完制定的epoch或者steps之后恢复设置的初始学习率
为了防止从较小学习率到指定的初始学习率变化较大引起误差增大。gradual warmup可以缓解这个问题,通过每个steps逐渐增大lr,知道达到指定的初始学习率后再开始学习率的下降。
在哪些场景带来的收益较大:
1.当网络非常容易出现nan时,采用warm up策略,可以使网络可以正常收敛
2.当训练集损失很低,但是测试集损失很大,准确率较低时