目录
3. 商群(factor group, or quotient group)
0. 前言
业余爱好小白的群论自学笔记。没有目的,为了学习而学习。用自己能够理解的方式沿着自己的思路进行整理记述(东施效颦小平邦彦的抄书学数学),不求严谨完备,但求逻辑连贯。
上一篇(群论基础速成(1))介绍了群的定义、同态和同构、有限群、循环群以及两种群的可视化技术。
对群的深入分析意味着要分析它们具有什么样的组织结构,彼此之间有什么联系,如何通过较小的群来构建较大的群,如何剖析较大的群从而揭露蕴含其中的较小的群。本篇将朝向这个目标讨论子群、陪集、正规子群、商群等概念,顺便介绍群的可视化的第3种技术:轨道和循环图。
1. 子群
【定义10】子群和真子群
对于群(G,*),如果H是G的子集(),且(H,*)也构成一个群的话,则称H为G的子群(
)。如果H是G的真子集(proper subset,
)的话,则称(H,*)为(G,*)的真子群(proper subgroup),简记为
.
Subgroup Test
证明(H,*)为(G,*)的子群的一种快捷方式(One-step subgroup Test):检验成立。
当然,以上隐含了一个前提条件就是,H必须为非空集合。
让我们来看为什么只要检验以上条件成立就可以确认(H,*)为(G,*)的子群?回忆一下,群的性质包含4条:(1)运算封闭性;(2)满足结合律;(3)存在单位元; (4)存在逆元。
首先,满足结合律是直接继承自(G,*);
其次,因为,所以,
,即H中存在单位元。注意,这里并没有假定a的逆元存在于H中;
第三,因为,且以上已经证明H中包含单位元e,因此
,即存在逆元;
第四,,即满足封闭性。
以上其实就是反复使用这个条件完成了证明。这个测试也成为one-step subgroup test.
Ref: group theory - Subgroup criterion. - Mathematics Stack Exchange
例1:
例2:显而易见的是,(e,*)和(G,*)都是(G,*)的子群,它们被称为平凡子群(trival subgroup)。(e,*)既时平凡子群又是真子群?
【定理2】循环群的子群
循环群的子群仍为循环群。
当然,反过来不成立。循环群可以是非循环群的子群。一个很平凡的事实是,任何一个有限群都一定有循环子群。
【定理3】循环子群
注意:循环子群不等同于循环群的子群!
对一个有限群中的任意一个元素重复做自我结合运算(即幂运算,a, a*a, a*a*a,...)所得到的结果构成的子集即构成该群的一个循环子群。
Informal proof:
首先,由(G,*)封闭性可知,a, a*a, a*a*a,...仍然在G中,即。
其次,结合律继承自(G,*)显然成立。
第三,由结合律可以推出封闭性在(H,*)中成立。
第四,单位元存在性。由于,而G为有限集,则H也一定为有限集,记为
,令
,
,即在(H,*)中存在单位元
第五,逆元存在性。也就是要证明:。用反证法。假设这个不成立,则必有,
矛盾。由此证明了逆元存在性。
由这个性质我们可以引出另一个群论可视化技术:轨道图和循环图。此处暂且不表,参见后面的说明。
2. 陪集和正规子群
子群的陪集与子群是什么关系呢?子群及其陪集之间一个最显著的差别在于前者包含单位元在内,而后者在其它方面具有和子集相似的结构,只不过有可能不包含单位元(并正因为此,陪集并不总是子群)。
【定义11】陪集
设(H,*)为群(G,*)的子群,对于G中任意元素a,定义集合为H的左陪集,同样定义集合
为H的右陪集。
例:H = {0, 2} 是Z4的一个子群。
它的左陪集(为简便期间,这里用ab表示a*b,用aH表示aH,但是要注意这里的运算是+)有:0H = {0,2}; 1H = {1,3}; 2H = {2,0}; 3H = {3,1};
它的右陪集有:H0 = {0,2}; H1 = {1,3}; H2 = {2,0}; H3 = {3,1};
有几点值得注意:
-
H的陪集与H很相似,都是G的子集,但是需要注意的是,H的陪集不一定构成子群。这是因为,如上所示,有些陪集没有包含单位元。
-
H的陪集构成了G的一个无重叠的分割(partition without overlap)。如上例所示,0H = 2H = {0,2}与1H = 3H ={1,3}
- H的所有左陪集覆盖了G的所有元素,换句话说,H的所有左陪集的并等于G。这个对于H的右陪集也同样成立。这个是陪集的一般性质。
- 对于Z4中每一个元素a,其对应的H的左陪集a+H与右陪集H+a都相等。这个性质可不是一般成立的性质。满足这个性质的子群叫做正规子群
【定义12】正规子群
设(H,*)为群(G,*)的子群,对于G中任意元素a,左陪集a*H等于右陪集H*a,则称H为G的正规子群。
如上例所示,H = {0, 2} 是Z4的一个正规子群,显然是源于“+”运算是可交换的(commutative)。
- 是不是只有可交换群才有正规子群呢?似乎并不是,待确认。
- 对于某个群,有没有可能有些子群是正规子群,有些不是呢?
3. 商群(factor group, or quotient group)
【定义13】商群
令群 (G, *)有正规子群(H,*)。定义陪集运算如下:
,其中a,b为G中的元素,h0,h1,...为H中的元素。H的陪集在该陪集运算下构成一个群,称为商群,记为G/H,读作“G Modulo H” 或者“G Slash H”。
继续考虑上面的例子:H = {0, 2} 是Z4的一个子群,其左陪集分别为0H,1H,2H,3H,按照以上定义的陪集运算可以得到其凯莱表如下所示(注意,0H=2H, 1H=3H,因此H的左陪集事实上只有两个元素):
很显然,这个群同构于Z2,即: .
【定义14】简单群(Simple Group)
每个群都包含它自身和Z1两个商群。如果一个群除此两个商群以外没有其它的商群,则称之为简单群。
但是,“简单群”是一个“批着羊皮的狼”的概念。有一个魔群(monster group),其阶数为808,017,424,794,512,875,886,459,904,961,710, 757,005,754,368 billion,但是它却是一个“简单群”。回头来看,也许质群或者素群(Prime Group)是个更合适的名称。因为简单群的性质确实很像自然数中的素数。