群论基础速成(2):子群,陪集,正规子群,商群

这篇博客介绍了群论的基础概念,包括子群的定义与测试、循环群的性质,特别是子群与真子群的区别。接着讲解了陪集的概念,强调了正规子群的特性,并给出了陪集与子群的关系。最后,阐述了商群的定义,通过例子展示了如何构造商群,并定义了简单群的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0. 前言

1. 子群

【定义10】子群和真子群

Subgroup Test

【定理2】循环群的子群

【定理3】循环子群

2. 陪集和正规子群

【定义11】陪集

【定义12】正规子群

3. 商群(factor group, or quotient group)

【定义13】商群

【定义14】简单群(Simple Group)


0. 前言

        业余爱好小白的群论自学笔记。没有目的,为了学习而学习。用自己能够理解的方式沿着自己的思路进行整理记述(东施效颦小平邦彦的抄书学数学),不求严谨完备,但求逻辑连贯。

        上一篇(群论基础速成(1))介绍了群的定义、同态和同构、有限群、循环群以及两种群的可视化技术。

        对群的深入分析意味着要分析它们具有什么样的组织结构,彼此之间有什么联系,如何通过较小的群来构建较大的群,如何剖析较大的群从而揭露蕴含其中的较小的群。本篇将朝向这个目标讨论子群、陪集、正规子群、商群等概念,顺便介绍群的可视化的第3种技术:轨道和循环图。

1. 子群

【定义10】子群和真子群

        对于群(G,*),如果H是G的子集(H \subseteq G),且(H,*)也构成一个群的话,则称H为G的子群(H \leq G)。如果H是G的真子集(proper subset, H \subset G)的话,则称(H,*)为(G,*)的真子群(proper subgroup),简记为H < G.

Subgroup Test

        证明(H,*)为(G,*)的子群的一种快捷方式(One-step subgroup Test):检验(a,b \in H ) \Rightarrow (a\star b^{-1}\in H)成立。

        当然,以上隐含了一个前提条件就是,H必须为非空集合。

        让我们来看为什么只要检验以上条件成立就可以确认(H,*)为(G,*)的子群?回忆一下,群的性质包含4条:(1)运算封闭性;(2)满足结合律;(3)存在单位元; (4)存在逆元。

        首先,满足结合律是直接继承自(G,*);

        其次,因为(a,b \in H ) \Rightarrow (a\star b^{-1}\in H),所以,a \star a^{-1} = e \in H,即H中存在单位元。注意,这里并没有假定a的逆元存在于H中;

        第三,因为(a,b \in H ) \Rightarrow (a\star b^{-1}\in H),且以上已经证明H中包含单位元e,因此\forall b \in H, e b \in H \Rightarrow b^{-1} = e b^{-1}\in H,即存在逆元;

        第四,\forall a,b \in H, \Rightarrow b^{-1} \in H \Rightarrow a \star (b^{-1})^{-1} = a\star b \in H,即满足封闭性。

        以上其实就是反复使用(a,b \in H ) \Rightarrow (a\star b^{-1}\in H)这个条件完成了证明。这个测试也成为one-step subgroup test.

        Ref: group theory - Subgroup criterion. - Mathematics Stack Exchange

        例1: \mathbb{Z}_2 < \mathbb{Z}_4

        例2:显而易见的是,(e,*)和(G,*)都是(G,*)的子群,它们被称为平凡子群(trival subgroup)。(e,*)既时平凡子群又是真子群?

【定理2】循环群的子群

        循环群的子群仍为循环群。

        当然,反过来不成立。循环群可以是非循环群的子群。一个很平凡的事实是,任何一个有限群都一定有循环子群

【定理3】循环子群

        注意:循环子群不等同于循环群的子群!

        对一个有限群中的任意一个元素重复做自我结合运算(即幂运算,a, a*a, a*a*a,...)所得到的结果构成的子集即构成该群的一个循环子群。

        Informal proof:

        首先,由(G,*)封闭性可知,a, a*a, a*a*a,...仍然在G中,即H = \{a, a^2, a^3, \cdots \} \subseteq G

        其次,结合律继承自(G,*)显然成立。

        第三,由结合律可以推出封闭性在(H,*)中成立。

        第四,单位元存在性。由于H \subseteq G,而G为有限集,则H也一定为有限集,记为H=\{a^{k_1},a^{k_2},...a^{k_m}\},令k = max(k_1,k_2,...,k_m)+1\exists j \in \{k_1,k_2,...,k_m\}, s.t, a^k = a^j \Rightarrow a^{k-j} = e \in H,即在(H,*)中存在单位元

        第五,逆元存在性。也就是要证明:\forall n \in \{k_1,k_2,...,k_m\}, \exists l \in \{k_1,k_2,...,k_m\}, s.t, a^n*a^l=e。用反证法。假设这个不成立,则必有,\forall n, a^n\neq e, \forall l \in \{k_1,k_2,...,k_m\}, a^{n+l} \neq e \\ \because a^n\neq e, \\ \therefore a^{n+l}\neq a^l, \forall l \in \{k_1,k_2,...,k_m\} \\ \therefore a^{n+l} \notin H矛盾。由此证明了逆元存在性。

        

        由这个性质我们可以引出另一个群论可视化技术:轨道图和循环图。此处暂且不表,参见后面的说明。

2. 陪集和正规子群

        子群的陪集与子群是什么关系呢?子群及其陪集之间一个最显著的差别在于前者包含单位元在内,而后者在其它方面具有和子集相似的结构,只不过有可能不包含单位元(并正因为此,陪集并不总是子群)。

【定义11】陪集

        设(H,*)为群(G,*)的子群,对于G中任意元素a,定义集合a*H = \{a * h_0, a * h_1, a * h_0, ... \}为H的左陪集,同样定义集合H*a = \{h_0 * a, h_1 * a, h_2 * a,...\}为H的右陪集。

        例:H = {0, 2} 是Z4的一个子群。

        它的左陪集(为简便期间,这里用ab表示a*b,用aH表示aH,但是要注意这里的运算是+)有:0H = {0,2}; 1H = {1,3}; 2H = {2,0}; 3H = {3,1}; 

        它的右陪集有:H0 = {0,2}; H1 = {1,3}; H2 = {2,0}; H3 = {3,1}; 

        有几点值得注意:

  • H的陪集与H很相似,都是G的子集,但是需要注意的是,H的陪集不一定构成子群。这是因为,如上所示,有些陪集没有包含单位元。

  • H的陪集构成了G的一个无重叠的分割(partition without overlap)。如上例所示,0H = 2H = {0,2}与1H = 3H ={1,3}

  • H的所有左陪集覆盖了G的所有元素,换句话说,H的所有左陪集的并等于G。这个对于H的右陪集也同样成立。这个是陪集的一般性质。
  • 对于Z4中每一个元素a,其对应的H的左陪集a+H与右陪集H+a都相等。这个性质可不是一般成立的性质。满足这个性质的子群叫做正规子群

【定义12】正规子群

        设(H,*)为群(G,*)的子群,对于G中任意元素a,左陪集a*H等于右陪集H*a,则称H为G的正规子群。

        如上例所示,H = {0, 2} 是Z4的一个正规子群,显然是源于“+”运算是可交换的(commutative)。

  1. 是不是只有可交换群才有正规子群呢?似乎并不是,待确认
  2. 对于某个群,有没有可能有些子群是正规子群,有些不是呢?

3. 商群(factor group, or quotient group)

【定义13】商群

        令群 (G, *)有正规子群(H,*)。定义陪集运算\diamond如下:(a*H) \diamond (b*H) = {a*b*h_0, a*b*h_1, a*b*h_2, ...},其中a,b为G中的元素,h0,h1,...为H中的元素。H的陪集在该陪集运算下构成一个群,称为商群,记为G/H,读作“G Modulo H” 或者“G Slash H”。

        继续考虑上面的例子:H = {0, 2} 是Z4的一个子群,其左陪集分别为0H,1H,2H,3H,按照以上定义的陪集运算可以得到其凯莱表如下所示(注意,0H=2H, 1H=3H,因此H的左陪集事实上只有两个元素):

       

        很显然,这个群同构于Z2,即: \mathbb{Z}4 / H \cong \mathbb{Z}2.

【定义14】简单群(Simple Group)

        每个群都包含它自身和Z1两个商群。如果一个群除此两个商群以外没有其它的商群,则称之为简单群。

        但是,“简单群”是一个“批着羊皮的狼”的概念。有一个魔群(monster group),其阶数为808,017,424,794,512,875,886,459,904,961,710, 757,005,754,368 billion,但是它却是一个“简单群”。回头来看,也许质群或者素群(Prime Group)是个更合适的名称。因为简单群的性质确实很像自然数中的素数。

Back to: 群论基础速成(A crash course for group theory)(1)https://blog.csdn.net/chenxy_bwave/article/details/122702319

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值