关于稠密性和连续性的通俗理解

        通俗地说,当我们说某个数域的稠密性时说的该数域中任意两个不同的数之间必然还存在第三个(同样属于该数域的)不同的数。

        有理数是稠密的,任意两个有理数之间还有无穷多个有理数。取任意两个不同有理数p、q,显而易见的是,(p+q)/2是居于p和q之间的另一个有理数。依此类推,可以构造出p和q之间的任意多个有理数。

        整数不是稠密的,1和2之间没有别的整数。

        实数显然也是“稠密”的。但是实数的“稠密”与有理数的稠密是不同级别的稠密。实际上实数是连续的,也称完备的。完备性逻辑上蕴含了稠密性,完备性是比稠密性更强(高一个维度的强)的性质。

        举一个通俗(虽欠缺严谨性)的例子。假设你有一把刀刃无限薄的理想刀,你举起刀往实数轴一刀砍下去,任意一刀你一定会砍中一个实数。但是,随便一刀砍下去不一定能切中一个有理数,事实上,能恰好切中一个有理数的概率无限趋近于0。

        另一种直观的方法理解稠密性和连续性:在数轴上任意选一个线段,不管这个线段都么短,只要这个线段不是一个点(不是长度为零),就一定能再这个线段中找到至少一个有理数(实际上可以找到无穷多个有理数)。有理数在数轴上选取的任何线段中都存在,但在某个点上就可能不存在了,这就是有理数的稠密性。对实数而言,不需要在数轴上选取线段,任意选取一个点,这个点就一定是实数,这时候对数轴来说才是真正的“完整”了,没有任何的“间断点”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值