TensorRT的集成加速TensorFlow的推理

NVIDIA的TensorRT与TensorFlow集成,为基于GPU的深度学习推理提供加速。集成在TensorFlow 1.7分支中可用,通过提供简单的API在内部应用FP16和INT8优化,提升性能。在ResNet-50基准测试中,TensorRT能将TensorFlow推理速度提升8倍。用户可以添加几行代码将TensorRT集成到TensorFlow程序中,优化模型并利用TensorRT的优化功能。
摘要由CSDN通过智能技术生成

TensorRT的集成加速TensorFlow的推理


NVIDIA宣布了TensorRT推理优化工具与TensorFlow的集成。TensorRT集成将可用于TensorFlow 1.7分支。TensorFlow是当今最受欢迎的深度学习框架,而NVIDIA TensorRT通过优化和高性能运行时方法加速了基于GPU平台的深度学习推理。我们希望在使用TensorRT的情况下,给TensorFlow的用户使用尽可能高的推理性能和接近透明的工作流程。新的集成提供了一个简单的API,它可以在TensorFlow内使用TensorRT应用强大的FP16和INT8优化。TensorRT在ResNet-50基准测试的低延迟运行中加快了8倍的TensorFlow推理速度。

TensorRT下载地址:https://developer.nvidia.com/nvidia-tensorrt-download
TesnsoRT的介绍文档:https://devblogs.nvidia.com/tensorrt-3-faster-tensorflow-inference/
TensorRT的开发者指南:http://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
TensorRT的样例代码:http://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#samples


TensorFlow中的子图优化:

集成优化TensorRT的TensorFlow执行兼容的子图,让TensorFlow执行剩余的图。虽然您仍然可以使用TensorFlow的丰富且灵活的特性集,但TensorRT将尽可能地解析模型并对图的部分应用优化。您的TensorFlow程序只需要几行新代码就可以促进集成。您是准备好使用TensorRT和TensorFlow模型了吗? 接下来,您将了解如何使用TensorRT优化TensorFlow模型需要导出的图表。您可能需要手动导入某些不受支持的TensorFlow层,这在某些情况下可能需要多花点时间。

接下来,让我们逐步了解工作流程。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值