大数定律及中心极限定理(知识点部分)

1.辛钦大数定理(弱大数定理)

X 1 , X 2 , … X_1,X_2,\dots X1,X2,是相互独立,服从同一分布的随机变量序列,且具有数学期望 E ( X k ) = μ ( k = 1 , 2 , …   ) . E(X_k)=\mu(k=1,2,\dots). E(Xk)=μ(k=1,2,).作前 n n n个变量的算术平均 1 n ∑ k = 1 n X k , \frac{1}{n}\sum_{k=1}^{n}X_k, n1k=1nXk,则对于任意 ε > 0 , \varepsilon>0, ε>0,
l i m n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 lim_{n\to \infty}P\{|\frac{1}{n}\sum_{k=1}^{n}X_k-\mu|<\varepsilon\}=1 limnP{n1k=1nXkμ<ε}=1
辛钦大数定律又可叙述为
X 1 , X 2 , … , X n , … X_1,X_2,\dots,X_n,\dots X1,X2,,Xn,相互独立,服从同一分布且具有数学期望 E ( X k ) = μ ( k = 1 , 2 , …   ) , E(X_k)=\mu(k=1,2,\dots), E(Xk)=μ(k=1,2,),则序列 X ‾ = 1 n ∑ k = 1 n X k \overline{X}=\frac{1}{n}\sum_{k=1}^{n}X_k X=n1k=1nXk依概率收敛于 μ , \mu, μ,
X ‾ ⟶ P μ \overline{X} \stackrel{P}{\longrightarrow} \mu XPμ

2.伯努利大数定律

f A f_A fA n n n次独立重复试验中事件 A A A发生的次数, p p p是事件 A A A在每次试验中发生的概率,则对于任意正数 ε > 0 , \varepsilon>0, ε>0,
l i m n → ∞ P { ∣ f A n − p ∣ < ε } = 1 lim_{n\to \infty}P\{|\frac{f_A}{n}-p|<\varepsilon\}=1 limnP{nfAp<ε}=1

l i m n → ∞ P { ∣ f A n − p ∣ ≥ ε } = 0 lim_{n\to \infty}P\{|\frac{f_A}{n}-p|\ge \varepsilon\}=0 limnP{nfApε}=0

3.独立同分布的中心极限定理

设随机变量 X 1 , X 2 , … , X n , … X_1,X_2,\dots,X_n,\dots X1,X2,,Xn,相互独立,服从同一分布,且具有数学期望和方差 : E ( X k ) = μ , D ( X k ) = σ 2 > 0 ( k = 1 , 2 , …   ) , :E(X_k)=\mu,D(X_k)=\sigma^2>0(k=1,2,\dots), :E(Xk)=μ,D(Xk)=σ2>0(k=1,2,),则随机变量之和 ∑ k = 1 n X k \sum_{k=1}^{n}X_k k=1nXk的标准化变量
Y n = ∑ k = 1 n X k − n μ n σ Y_n=\frac{\sum_{k=1}^{n}X_k-n\mu}{\sqrt{n}\sigma} Yn=n σk=1nXknμ
的分布函数 F n ( x ) F_n(x) Fn(x)对于任意 x x x满足
l i m n → ∞ F n ( x ) = l i m n → ∞ P { ∑ k = 1 n X k − n μ n σ ≤ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = ϕ ( x ) . lim_{n\to \infty}F_n(x)=lim_{n\to \infty}P\{\frac{\sum_{k=1}^{n}X_k-n\mu}{\sqrt{n}\sigma}\leq x\}\\ =\int_{-\infty}^{x}\frac{1}{\sqrt{2 \pi}}e^{-\frac{t^2}{2}}dt=\phi (x). limnFn(x)=limnP{n σk=1nXknμx}=x2π 1e2t2dt=ϕ(x).

4.李雅普诺夫定理

设随机变量 X 1 , X 2 , … , X n , … X_1,X_2,\dots,X_n,\dots X1,X2,,Xn,相互独立且具有数学期望和方差: E ( X k ) = μ k , D ( X k ) = σ k 2 > 0 , k = 1 , 2 , … , E(X_k)=\mu_k,D(X_k)=\sigma_k^2>0,k=1,2,\dots, E(Xk)=μk,D(Xk)=σk2>0,k=1,2,,

B n 2 = ∑ k = 1 n σ k 2 . B_n^2=\sum_{k=1}^{n}\sigma_k^2. Bn2=k=1nσk2.
若存在正数 δ , \delta, δ,使得当 n → ∞ n\to \infty n时,
1 B n 2 + δ ∑ k = 1 n E { ∣ X k − μ k ∣ 2 + δ } → 0 \frac{1}{B_n^{2+\delta}}\sum_{k=1}^{n}E\{|X_k-\mu_k|^{2+\delta}\}\to 0 Bn2+δ1k=1nE{Xkμk2+δ}0
则随机变量之和 ∑ k = 1 n X k \sum_{k=1}^{n}X_k k=1nXk的标准化变量
Z n = ∑ k = 1 n X k − ∑ k = 1 n μ k B n Z_n=\frac{\sum_{k=1}^{n}X_k-\sum_{k=1}^{n}\mu_k}{B_n} Zn=Bnk=1nXkk=1nμk
的分布函数 F n ( x ) F_n(x) Fn(x)对于任意 x x x满足
l i m n → ∞ F n ( x ) = l i m n → ∞ P { ∑ k = 1 n X k − ∑ k = 1 n μ k B n ≤ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = ϕ ( x ) lim_{n\to\infty}F_n(x)=lim_{n\to\infty}P\{\frac{\sum_{k=1}^{n}X_k-\sum_{k=1}^{n}\mu_k}{B_n}\leq x\}\\ =\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt=\phi(x) limnFn(x)=limnP{Bnk=1nXkk=1nμkx}=x2π 1e2t2dt=ϕ(x)

5棣莫弗—拉普拉斯定理

设随机变量 η n ( n = 1 , 2 , …   ) \eta_n(n=1,2,\dots) ηn(n=1,2,)服从参数为 n , p ( 0 < p < 1 ) n,p(0<p<1) n,p(0<p<1)的二项分布,则对于任意 x , x, x,
l i m n → ∞ P { η n − n p n p ( 1 − p ) ≤ x } = ∫ − ∞ x 1 2 π e − t 2 2 = ϕ ( x ) . lim_{n\to \infty}P\{\frac{\eta_n-np}{\sqrt{np(1-p)}}\leq x\}=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}=\phi(x). limnP{np(1p) ηnnpx}=x2π 1e2t2=ϕ(x).

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值