深度学习开端---BP神经网络

本文介绍了深度学习的基础——BP神经网络,包括其简介、原理和TensorFlow开发环境的搭建。BP网络是最基本的神经网络,是CNN、RNN等高级网络的基础。文章详细解释了网络的反向传播过程,并探讨了学习率的选择。最后,提供了在Linux上快速安装TensorFlow的方法。

0.学习路径示意图

640?wx_fmt=png

    Hello,各位小伙伴大家晚上好呀,这期开始,博主就开始给大家分享深度学习这一块的内容啦。至于为啥要先开始讲BP神经网络(Back Propagetion Networks 反向传播网络),而不是一上来就是高大上的CNN、RNN、LSTM blabla,原因非常简单,上述所说各种高大上的神经网络都是基于BP网络出发的,最基础的原理都是由BP网络而来,所以小伙伴们只要掌握了这章最基本的原理,接下来的各种网络也能学得得心应手,有没有一种BP在手,天下我有的感觉。

    废话不多说,这期的内容主要分为以下几点

        1.BP神经网络简介

        2.BP神经网络原理

        3.Tensorflow开发环境搭建

        4.总结


1.BP神经网络简介

    BP网络(Back Propagetion Networks 反向传播网络),相信很多小伙伴一听到这个“网络”二字,头皮就开始发麻,博主一开始学的时候也一样,觉得网络密密麻麻地,绝对难得一批,其实不然,这里的网络比我们现实生活中的网络简化了不止一丁点儿,但是它却能出奇地完成各种各样的任务,逐渐成为我们人类智能生活的璀璨明珠。当然,BP网络虽然并不是最耀眼的一颗,但却是每一个初学的小伙伴必须去了解的一颗,博主认为BP网络是每个小伙伴深度学习之旅的开端。


2.BP神经网络原理

    光看名字,可能小伙伴们并不了解这个网络是干啥的,那博主先给大家上个图,作为神经网络家族中最简单的一种网络,相信大家看完它的结构之后一定会对它有个非常直观的了解。

640?wx_fmt=png

    对,就是这么个东西,左边输入,中间计算,右边输出。可能这样还不够简单,博主给大家画一个更简单的。

640?wx_fmt=png

    不算输入层,上面的网络结构总共有两层,隐藏层和输出层,它们“圆圈”里的计算都是下图的计算组合

640?wx_fmt=png

    每一级都是利用前一级的输出做输入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值