Frogger (最短路)
Frogger
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 
Input
The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.
Output
For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
Sample Input
2
0 0
3 4

3
17 4
19 4
18 5

0
Sample Output
Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414

题目大意:

青蛙A在第一个石头上,青蛙B在第二个石头上,求青蛙A跳往青蛙B的路径上最大一步的最小值。

有n个石头,告诉你每个石头的坐标。

代码1(Floyd):

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define N 1005
#define inf 0x3f3f3f
using namespace std;
double e[N][N];
struct node
{
    int x,y;
}a[N];
int main()
{
    int k=1,n;
    while (~scanf("%d",&n)&&n)
    {
        memset(a,0,sizeof(a));
        for (int i=1;i<=n;i++)
            scanf("%d%d",&a[i].x,&a[i].y);
        memset(e,inf,sizeof(e));
        for(int i=1;i<=n;i++)
            for(int j=2;j<=n;j++)
            e[i][j]=e[j][i]=sqrt((a[i].x-a[j].x*1.0)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
        for(int k=1;k<=n;k++)
            for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                if(k!=i&&i!=j&&k!=j)
                e[i][j]=min(e[i][j],max(e[i][k],e[k][j]));
        printf("Scenario #%d\nFrog Distance = %.3lf\n\n",k++,e[1][2]);
    }
    return 0;
}
代码2(dijkstra):

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define N 205
#define inf 0x3f3f3f
using namespace std;
double e[N][N],dis[N];
int vis[N],x[N],y[N],n;
void dij(int s,int l)
{
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
        dis[i]=e[s][i];
    vis[s]=1;
    for(int i=1;i<n;i++)
    {
        double minn=inf;
        int k;
        for(int j=1;j<=n;j++)
            if(!vis[j]&&minn>dis[j])
        {
            k=j;
            minn=dis[j];
        }
        vis[k]=1;
        for(int j=1;j<=n;j++)
            dis[j]=min(dis[j],max(dis[k],e[k][j]));
    }
    return ;
}
int main()
{
    int t=1;
    while(~scanf("%d",&n)&&n)
    {
        memset(e,0,sizeof(e));
        for(int i=1;i<=n;i++)
            scanf("%d%d",&x[i],&y[i]);
        for(int i=1;i<n;i++)
            for(int j=i+1;j<=n;j++)
            e[i][j]=e[j][i]=sqrt(double(x[i]-x[j])*(x[i]-x[j])+double(y[i]-y[j])*(y[i]-y[j]));
            dij(1,2);
        printf("Scenario #%d\nFrog Distance = %.3lf\n\n",t++,dis[2]);
    }
    return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/chimchim04/article/details/79966276
个人分类: 最短路
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

Frogger (最短路)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭