数论数学:泰勒展开

泰勒展开是一种数学技巧,能将复杂函数逼近为无限级数,便于计算。通过求导和对比函数在特定点的导数值,可以得到展开系数。博客通过形象的画画比喻解释了泰勒展开的概念,并举例展示了如何对sin(x)进行泰勒展开,同时指出展开后的函数可能存在误差。文章以常用泰勒展开公式作为结尾。
摘要由CSDN通过智能技术生成

WHAT IS 泰勒展开!!??

泰勒展开是个好东西呀!有什么用捏?他可以把不可能计算的各种非人函数的估值计算出来。
关于它的具体思路呢,举一个形象的例子:
博主女神
额,这是博主女神,博主想要临摹这幅画,第一步:
在这里插入图片描述
然后
在这里插入图片描述
最后:
在这里插入图片描述
额,不要吐槽反差太大。。。主要是博主怕把女神整丑了。。。
其实博主以上干的罪恶的勾当就是一个无限接近原图的过程
在泰勒展开中,就是如此把一个函数无限接近原先的需要展开的函数。
至于无限接近的过程就是不停的求导的过程。
好了形象雷人的比喻环节结束了
现在讲如何实现
例如,现在做一个与f(x)无限接近的函数g(x):
f ( x ) = s i n ( x ) f(x)=sin(x) f(x)=sin(x)
然后把他们化成一个:
g ( x ) = ∑ 0 ∞ a i x i g(x)=\sum_0^\infin a_ix^i g(x)=0aixi
的形式。首先,当x=0时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值