基本反向电路带输出直流偏置控制功能电路图如下所示,这里尝试用各种不同的思路来推导其传递函数,通过结果我们发现最终将得到一样的传递函数,不同思路可以有助于对运算放大器的工作原理更好理解。
A、利用虚短虚断原理推导:
1、理想运放假设
在理想运放假设下(输入端电流为 0、运放两输入端电压相等),可得:
其中 Vn表示运放反相端的电压。
2、节点方程(KCL)
对反相端节点应用 KCL(节点电流和为零),可得:
3、代入 Vn=Vcmi
将 Vn=Vcmi代入上式:
4、解出 Vout
整理可得:
若展开该式,则可写成:
以上即该电路的传递函数,若 Zi与 Zf为纯电阻,则它是带有共模偏置项的反相放大器。若 Zi与 Zf为一般阻抗,则只需将上述式子中相应的电阻值替换为阻抗即可。
B、利用叠加原理推导:
下面给出一种常用的“叠加”思路来推导同样的结果。将电路的两个输入视为 Vin 和 Vcmi,分别考虑它们对输出的贡献,再将结果相加即可。
- 只考虑Vin 对输出的影响,令 Vcmi=0V
当Vcmi=0 时,同相端电压为 0。对理想运放而言,反相端电压与同相端电压相等,故反相端电压也为 0(“虚地”概念)。这样电路就变成了一个标准的反相放大器:反相端电压(节点电位) V−=0,输入电流经过电阻Zi,然后流过反馈电阻Zf 回到输出端,因此,输出与输入间的关系为
2、只考虑Vcmi 对输出的影响,令 Vin=0V
当 Vin=0 时,输入端接地。而同相端电压为Vcmi,理想运放令反相端电压也等于 Vcmi。此时:从“Vin 节点”到反相端的电阻Zi,其两端电压分别是 0 和Vcmi。从“输出端”到反相端的反馈电阻Zf,其两端电压分别是Vout 和Vcmi。
对反相端做 KCL,令流入反相端的电流为正,则
整理可得;
进而得到
3、叠加结果
由于运放是线性器件,最终的输出就是来自Vin 和 Vcmi 两个独立“激励”贡献的叠加和,即
这与之前直接使用虚短虚断方法一致,只是用“叠加”的思路更直观地看到了输入信号与共模电压各自对输出的贡献。
C、利用极限原理推导:
下面再提供一种常见的“有限增益模型”推导思路:先假设运放有一个非常大的但有限的开环增益 AA,写出运放输出与输入差值之间的关系式,然后令 A→∞A \to \infty 得到极限形式。这个方法在分析某些精密电路时很有用。
1、写出运放的开环模型方程
对于理想运放通常假设“输入差分电压极小”,但若我们引入一个有限增益 A,则
在此电路中,
2、将 V−用 Vout表示
由上式可得
3、对反相端节点 V−写 KCL
反相端节点通过 Zi与 Vin相连,通过 Zf与输出 Vout相连,并假设理想运放输入电流为 0。则
将上一步得到的式子代入,得到
展开并整理,可写成
4、令 A→∞并求解 Vout
当 A→∞时,Vout/A项变得可忽略,因此上式简化为
这时再解得
这便是该电路的传递函数。由此可见,若运放增益 A足够大,则反相端电压与同相端电压“几乎相等”,最终得到与前两种思路相同的结果。这样就完成了利用“有限增益模型并令 A→∞求极限的第三种推导方式。
D、参考点平移原理推导:
1、定义新电压变量
假设将同相输入端电压Vcmi 当作新的参考零电位。为此,引入新变量v′=v−Vcmi,
表示对原参考地(系统地)“下移”了Vcmi。
新的“输入电压”记为Vin′=Vin−Vcmi。
新的“输出电压”记为 Vout′=Vout−Vcmi。
此时,放大器的非反相端在新参考系下电压为 0(因为它原来是 Vcmi)。
2、在新参考系下,电路变成标准的反相放大器
在这个新参考系里,非反相端是 0V,反相端在理想运放模型下也将贴近 0V(“虚地”)。因此电路就是一个“输入电压为 Vin′,反相端虚地,负反馈电阻Zf,输入电阻 Zi 的标准反相放大器”。对这样一个“标准反相放大器”而言,新参考系下的输出 Vout′和Vin′ 的关系是
3、将结果平移回原参考系
由于我们当初“下移”了 Vcmi,现在要回到最初的电路坐标系,则
展开整理得
这正是我们熟悉的结果。该方法的思路可以概括为:“把同相端视作零电位,就把电路看成一个普通的反相放大器;然后再把输出电平整体上抬回到原先的共模电压处。”这样可以非常快捷地得到该电路的传递函数。