全息测量(激光干涉)基本知识总结

1.1全息图的记录

全息图的记录是物波和参考波在记录介质面相遇并发生干涉,生成的干涉图样的强度信息被记录介质记录下来。
在记录面处的物波和参考波的复振幅分布分别为:
O ( x , y ) = O 0 ( x , y ) e x p [ i φ o ( x , y ) ] O(x,y)=O_0(x,y)exp[iφ_o(x,y)] O(x,y)=O0(x,y)exp[iφo(x,y)]
R ( x , y ) = R 0 ( x , y ) e x p [ i φ R ( x , y ) ] R(x,y)=R_0(x,y)exp[iφ_R(x,y)] R(x,y)=R0(x,y)exp[iφR(x,y)]
O o ( x , y ) O_o(x,y) Oo(x,y)为物波的复振幅, e x p [ i φ o ( x , y ) ] exp[iφ_o(x,y)] exp[iφo(x,y)]为相位分布
全息图
U ( x , y ) = O ( x , y ) + R ( x , y ) U(x,y)=O(x,y)+R(x,y) U(x,y)=O(x,y)+R(x,y)
全息图的光强度可以表示为:
  I ( x , y ) = U U ∗ = [ O + R ] [ O + R ] ∗ = O 0 2 + R 0 2 + O 0 R 0 ∗ e x p [ i ( ϕ o − ϕ R ) ] + O 0 ∗ R 0 e x p [ − i ( ϕ O − ϕ R ) ] \begin{aligned} \ I(x,y)=UU^*=[O+R][O+R]^* \\ = O^2_0+R^2_0+O_0R^*_0exp[i(\phi_o-\phi_R)]+\\O^*_0R_0exp[-i(\phi_O-\phi_R)] \end{aligned}  I(x,y)=UU=[O+R][O+R]=O02+R02+O0R0exp[i(ϕoϕR)]+O0R0exp[i(ϕOϕR)]

1.2全息图的再现

H面记录到的全息图样本质上为一光栅,全息图的再现可以用一束照明光对全息图进行照射,来活的重建的物波前。全息图的透过率函数可以表示为:
t ( x , y ) = β I ( x , y ) t(x,y)=\beta I(x,y) t(x,y)=βI(x,y)
假设用来重建物波波前的再现照明光复振幅为:
b ( x , y ) = B ( x , y ) e x p [ i ϕ b ( x , y ) ] b(x,y)=B(x,y)exp[i\phi_b(x,y)] b(x,y)=B(x,y)exp[iϕb(x,y)]
再现照明光通过H面上记录的全息图的透射光场可以表示为:
U ( x , y ) = b ( x , y ) t ( x , y ) = b ( x , y ) O O ∗ + b ( x , y ) R R ∗ + b ( x , y ) β O O R O ∗ e x p [ i ( ϕ O − ϕ R ) ] + b ( x , y ) β O O ∗ R O e x p [ − i ( ϕ O − ϕ R ) ] = U 1 ( x , y ) + U 2 ( x , y ) + U 3 ( x , y ) + U 4 ( x , y ) \begin{aligned} U(x,y)=b(x,y)t(x,y)=b(x,y)OO^*+b(x,y)RR^* \\+b(x,y)\beta O_OR^*_Oexp[i(\phi_O-\phi_R)]+ \\b(x,y)\beta O^*_OR_Oexp[-i(\phi_O-\phi_R)] \\=U_1(x,y)+U_2(x,y)+U_3(x,y)+U_4(x,y) \end{aligned} U(x,y)=b(x,y)t(x,y)=b(x,y)OO+b(x,y)RR+b(x,y)βOOROexp[i(ϕOϕR)]+b(x,y)βOOROexp[i(ϕOϕR)]=U1(x,y)+U2(x,y)+U3(x,y)+U4(x,y)
一般情况下,全息图再现过程中的再现照明光波为原参考波,因此
U 3 ( x , y ) = β R O 2 O O ( x , y ) e x p [ i ϕ O ( x , y ) ] U_3(x,y)=\beta R_O^2O_O(x,y)exp[i\phi_O(x,y)] U3(x,y)=βRO2OO(x,y)exp[iϕO(x,y)]
U 4 ( x , y ) = β R O 2 O O ∗ ( x , y ) e x p i [ ϕ O ( x , y ) − 2 ϕ R ( x , y ) ] U_4(x,y)=\beta R^2_OO^*_O(x,y)exp{i[\phi_O(x,y)-2\phi_R(x,y)]} U4(x,y)=βRO2OO(x,y)expi[ϕO(x,y)2ϕR(x,y)]

二.离轴数字全息的记录和再现

2.1 光在空间中传播的标量衍射理论

瑞利-索末菲衍射积分公式为:
U ( P ) = 1 j λ ∬ ∑ U ( Q ) e x p ( j k r ) r c o s θ d s U(P)=\frac{1}{j\lambda}\iint\limits_{\sum}U(Q)\frac{exp(jkr)}{r}cos\theta ds U(P)=1U(Q)rexp(jkr)cosθds
r = z 2 + ( x − x 0 ) 2 + ( y − y 0 ) 2 r=\sqrt{z^2+(x-x_0)^2+(y-y_0)^2} r=z2+(xx0)2+(yy0)2
c o s θ = z r cos\theta=\frac{z}{r} cosθ=rz
代入
U ( x , y , z ) = 1 j λ ∬ ∑ U 0 ( x 0 , y 0 ) e x p [ j k z 2 + ( x − x 0 ) 2 + ( y − y 0 ) 2 z 2 + ( x − x 0 ) 2 + ( y − y 0 ) 2 c o s θ d x 0 d y 0 U(x,y,z)=\frac{1}{j\lambda}\iint\limits_{\sum}U_0(x_0,y_0)\frac{exp[jk\sqrt{z^2+(x-x_0)^2+(y-y_0)^2}}{\sqrt{z^2+(x-x_0)^2+(y-y_0)^2}}cos\theta dx_0dy_0 U(x,y,z)=1U0(x0,y0)z2+(xx0)2+(yy0)2 exp[jkz2+(xx0)2+(yy0)2 cosθdx0dy0
当满足近轴条件时 c o s θ ≈ 1 cos\theta\approx1 cosθ1
r = z 2 + ( x − x 0 ) 2 + ( y − y 0 ) 2 r=\sqrt{z^2+(x-x_0)^2+(y-y_0)^2} r=z2+(xx0)2+(yy0)2 展开,略去高阶小量
r = z 2 + ( x − x 0 ) 2 + ( y − y 0 ) 2 = z [ 1 + ( x − x 0 ) 2 + ( y − y 0 ) 2 2 z 2 ] r=\sqrt{z^2+(x-x_0)^2+(y-y_0)^2}=z[1+\frac{(x-x_0)^2+(y-y_0)^2}{2z^2}] r=z2+(xx0)2+(yy0)2 =z[1+2z2(xx0)2+(yy0)2]
得到菲涅尔衍射积分公式:
U ( x , y , z ) = 1 j λ z e x p ( j k z ) ∬ ∑ U 0 ( x 0 , y 0 , 0 ) e x p [ j k ( x − x 0 ) 2 + ( y − y 0 ) 2 2 z ] d x 0 d y 0 U(x,y,z)=\frac{1}{j\lambda z}exp(jkz)\iint\limits_{\sum}U_0(x_0,y_0,0)exp[jk\frac{(x-x_0)^2+(y-y_0)^2}{2z}]dx_0dy_0 U(x,y,z)=z1exp(jkz)U0(x0,y0,0)exp[jk2z(xx0)2+(yy0)2]dx0dy0
也可以写成卷积的形式:
U ( x , y , z ) = 1 j λ z e x p ( j k z ) ∬ ∑ U 0 ( x 0 , y 0 , 0 ) e x p [ j k ( x − x 0 ) 2 + ( y − y 0 ) 2 2 z ] d x 0 d y 0 = 1 j λ z e x p ( j k z ) U 0 ( x 0 , y 0 , 0 ) ⓧ e x p [ j k 2 z ( x 2 + y 2 ) ] = U 0 ( x 0 , y 0 , 0 ) ⓧ g ( x , y , z ) \begin{aligned} U(x,y,z)=\frac{1}{j\lambda z}exp(jkz)\iint\limits_{\sum}U_0(x_0,y_0,0)exp[jk\frac{(x-x_0)^2+(y-y_0)^2}{2z}]dx_0dy_0 \\=\frac{1}{j\lambda z}exp(jkz)U_0(x_0,y_0,0)ⓧexp[\frac{jk}{2z}(x^2+y^2)] \\=U_0(x_0,y_0,0)ⓧg(x,y,z) \end{aligned} U(x,y,z)=z1exp(jkz)U0(x0,y0,0)exp[jk2z(xx0)2+(yy0)2]dx0dy0=z1exp(jkz)U0(x0,y0,0)exp[2zjk(x2+y2)]=U0(x0,y0,0)g(x,y,z)
式中g(x,y,z)为脉冲响应,表示为:
g ( x , y , z ) = e x p ( j k z ) j λ z e x p [ j k 2 z ( x 2 + y 2 ) ] g(x,y,z)=\frac{exp(jkz)}{j\lambda z}exp[\frac{jk}{2z}(x^2+y^2)] g(x,y,z)=zexp(jkz)exp[2zjk(x2+y2)]
基于卷积定理,公式可进一步表示为:
F { U ( x , y , z ) } = F { U 0 ( x 0 , y 0 , 0 ) } F { g ( x , y , z ) } F\{U(x,y,z)\}=F\{U_0(x_0,y_0,0)\}F\{g(x,y,z)\} F{U(x,y,z)}=F{U0(x0,y0,0)}F{g(x,y,z)}
该式为数值传播算法中的卷积法。
G ( f x , f y , z ) = F g ( x , y , z ) = e x p ( j k z ) e x p [ − j π z λ ( f x 2 + f y 2 ) ] G(f_x,f_y,z)=F{g(x,y,z)}=exp(jkz)exp[-j\pi z\lambda (f_x^2+f_y^2)] G(fx,fy,z)=Fg(x,y,z)=exp(jkz)exp[zλ(fx2+fy2)]
角谱法:
U ( x , y , z ) = F − 1 { F { U 0 ( x 0 , y 0 , 0 ) } G ( f x , f y , z ) } U(x,y,z)=F^{-1}\{F\{U_0(x_0,y_0,0)\}G(f_x,f_y,z)\} U(x,y,z)=F1{F{U0(x0,y0,0)}G(fx,fy,z)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值