1.1全息图的记录
全息图的记录是物波和参考波在记录介质面相遇并发生干涉,生成的干涉图样的强度信息被记录介质记录下来。
在记录面处的物波和参考波的复振幅分布分别为:
O
(
x
,
y
)
=
O
0
(
x
,
y
)
e
x
p
[
i
φ
o
(
x
,
y
)
]
O(x,y)=O_0(x,y)exp[iφ_o(x,y)]
O(x,y)=O0(x,y)exp[iφo(x,y)]
R
(
x
,
y
)
=
R
0
(
x
,
y
)
e
x
p
[
i
φ
R
(
x
,
y
)
]
R(x,y)=R_0(x,y)exp[iφ_R(x,y)]
R(x,y)=R0(x,y)exp[iφR(x,y)]
O
o
(
x
,
y
)
O_o(x,y)
Oo(x,y)为物波的复振幅,
e
x
p
[
i
φ
o
(
x
,
y
)
]
exp[iφ_o(x,y)]
exp[iφo(x,y)]为相位分布
全息图
U
(
x
,
y
)
=
O
(
x
,
y
)
+
R
(
x
,
y
)
U(x,y)=O(x,y)+R(x,y)
U(x,y)=O(x,y)+R(x,y)
全息图的光强度可以表示为:
I
(
x
,
y
)
=
U
U
∗
=
[
O
+
R
]
[
O
+
R
]
∗
=
O
0
2
+
R
0
2
+
O
0
R
0
∗
e
x
p
[
i
(
ϕ
o
−
ϕ
R
)
]
+
O
0
∗
R
0
e
x
p
[
−
i
(
ϕ
O
−
ϕ
R
)
]
\begin{aligned} \ I(x,y)=UU^*=[O+R][O+R]^* \\ = O^2_0+R^2_0+O_0R^*_0exp[i(\phi_o-\phi_R)]+\\O^*_0R_0exp[-i(\phi_O-\phi_R)] \end{aligned}
I(x,y)=UU∗=[O+R][O+R]∗=O02+R02+O0R0∗exp[i(ϕo−ϕR)]+O0∗R0exp[−i(ϕO−ϕR)]
1.2全息图的再现
H面记录到的全息图样本质上为一光栅,全息图的再现可以用一束照明光对全息图进行照射,来活的重建的物波前。全息图的透过率函数可以表示为:
t
(
x
,
y
)
=
β
I
(
x
,
y
)
t(x,y)=\beta I(x,y)
t(x,y)=βI(x,y)
假设用来重建物波波前的再现照明光复振幅为:
b
(
x
,
y
)
=
B
(
x
,
y
)
e
x
p
[
i
ϕ
b
(
x
,
y
)
]
b(x,y)=B(x,y)exp[i\phi_b(x,y)]
b(x,y)=B(x,y)exp[iϕb(x,y)]
再现照明光通过H面上记录的全息图的透射光场可以表示为:
U
(
x
,
y
)
=
b
(
x
,
y
)
t
(
x
,
y
)
=
b
(
x
,
y
)
O
O
∗
+
b
(
x
,
y
)
R
R
∗
+
b
(
x
,
y
)
β
O
O
R
O
∗
e
x
p
[
i
(
ϕ
O
−
ϕ
R
)
]
+
b
(
x
,
y
)
β
O
O
∗
R
O
e
x
p
[
−
i
(
ϕ
O
−
ϕ
R
)
]
=
U
1
(
x
,
y
)
+
U
2
(
x
,
y
)
+
U
3
(
x
,
y
)
+
U
4
(
x
,
y
)
\begin{aligned} U(x,y)=b(x,y)t(x,y)=b(x,y)OO^*+b(x,y)RR^* \\+b(x,y)\beta O_OR^*_Oexp[i(\phi_O-\phi_R)]+ \\b(x,y)\beta O^*_OR_Oexp[-i(\phi_O-\phi_R)] \\=U_1(x,y)+U_2(x,y)+U_3(x,y)+U_4(x,y) \end{aligned}
U(x,y)=b(x,y)t(x,y)=b(x,y)OO∗+b(x,y)RR∗+b(x,y)βOORO∗exp[i(ϕO−ϕR)]+b(x,y)βOO∗ROexp[−i(ϕO−ϕR)]=U1(x,y)+U2(x,y)+U3(x,y)+U4(x,y)
一般情况下,全息图再现过程中的再现照明光波为原参考波,因此
U
3
(
x
,
y
)
=
β
R
O
2
O
O
(
x
,
y
)
e
x
p
[
i
ϕ
O
(
x
,
y
)
]
U_3(x,y)=\beta R_O^2O_O(x,y)exp[i\phi_O(x,y)]
U3(x,y)=βRO2OO(x,y)exp[iϕO(x,y)]
U
4
(
x
,
y
)
=
β
R
O
2
O
O
∗
(
x
,
y
)
e
x
p
i
[
ϕ
O
(
x
,
y
)
−
2
ϕ
R
(
x
,
y
)
]
U_4(x,y)=\beta R^2_OO^*_O(x,y)exp{i[\phi_O(x,y)-2\phi_R(x,y)]}
U4(x,y)=βRO2OO∗(x,y)expi[ϕO(x,y)−2ϕR(x,y)]
二.离轴数字全息的记录和再现
2.1 光在空间中传播的标量衍射理论
瑞利-索末菲衍射积分公式为:
U
(
P
)
=
1
j
λ
∬
∑
U
(
Q
)
e
x
p
(
j
k
r
)
r
c
o
s
θ
d
s
U(P)=\frac{1}{j\lambda}\iint\limits_{\sum}U(Q)\frac{exp(jkr)}{r}cos\theta ds
U(P)=jλ1∑∬U(Q)rexp(jkr)cosθds
r
=
z
2
+
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
r=\sqrt{z^2+(x-x_0)^2+(y-y_0)^2}
r=z2+(x−x0)2+(y−y0)2
c
o
s
θ
=
z
r
cos\theta=\frac{z}{r}
cosθ=rz
代入
U
(
x
,
y
,
z
)
=
1
j
λ
∬
∑
U
0
(
x
0
,
y
0
)
e
x
p
[
j
k
z
2
+
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
z
2
+
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
c
o
s
θ
d
x
0
d
y
0
U(x,y,z)=\frac{1}{j\lambda}\iint\limits_{\sum}U_0(x_0,y_0)\frac{exp[jk\sqrt{z^2+(x-x_0)^2+(y-y_0)^2}}{\sqrt{z^2+(x-x_0)^2+(y-y_0)^2}}cos\theta dx_0dy_0
U(x,y,z)=jλ1∑∬U0(x0,y0)z2+(x−x0)2+(y−y0)2exp[jkz2+(x−x0)2+(y−y0)2cosθdx0dy0
当满足近轴条件时
c
o
s
θ
≈
1
cos\theta\approx1
cosθ≈1
将
r
=
z
2
+
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
r=\sqrt{z^2+(x-x_0)^2+(y-y_0)^2}
r=z2+(x−x0)2+(y−y0)2展开,略去高阶小量
r
=
z
2
+
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
=
z
[
1
+
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
2
z
2
]
r=\sqrt{z^2+(x-x_0)^2+(y-y_0)^2}=z[1+\frac{(x-x_0)^2+(y-y_0)^2}{2z^2}]
r=z2+(x−x0)2+(y−y0)2=z[1+2z2(x−x0)2+(y−y0)2]
得到菲涅尔衍射积分公式:
U
(
x
,
y
,
z
)
=
1
j
λ
z
e
x
p
(
j
k
z
)
∬
∑
U
0
(
x
0
,
y
0
,
0
)
e
x
p
[
j
k
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
2
z
]
d
x
0
d
y
0
U(x,y,z)=\frac{1}{j\lambda z}exp(jkz)\iint\limits_{\sum}U_0(x_0,y_0,0)exp[jk\frac{(x-x_0)^2+(y-y_0)^2}{2z}]dx_0dy_0
U(x,y,z)=jλz1exp(jkz)∑∬U0(x0,y0,0)exp[jk2z(x−x0)2+(y−y0)2]dx0dy0
也可以写成卷积的形式:
U
(
x
,
y
,
z
)
=
1
j
λ
z
e
x
p
(
j
k
z
)
∬
∑
U
0
(
x
0
,
y
0
,
0
)
e
x
p
[
j
k
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
2
z
]
d
x
0
d
y
0
=
1
j
λ
z
e
x
p
(
j
k
z
)
U
0
(
x
0
,
y
0
,
0
)
ⓧ
e
x
p
[
j
k
2
z
(
x
2
+
y
2
)
]
=
U
0
(
x
0
,
y
0
,
0
)
ⓧ
g
(
x
,
y
,
z
)
\begin{aligned} U(x,y,z)=\frac{1}{j\lambda z}exp(jkz)\iint\limits_{\sum}U_0(x_0,y_0,0)exp[jk\frac{(x-x_0)^2+(y-y_0)^2}{2z}]dx_0dy_0 \\=\frac{1}{j\lambda z}exp(jkz)U_0(x_0,y_0,0)ⓧexp[\frac{jk}{2z}(x^2+y^2)] \\=U_0(x_0,y_0,0)ⓧg(x,y,z) \end{aligned}
U(x,y,z)=jλz1exp(jkz)∑∬U0(x0,y0,0)exp[jk2z(x−x0)2+(y−y0)2]dx0dy0=jλz1exp(jkz)U0(x0,y0,0)ⓧexp[2zjk(x2+y2)]=U0(x0,y0,0)ⓧg(x,y,z)
式中g(x,y,z)为脉冲响应,表示为:
g
(
x
,
y
,
z
)
=
e
x
p
(
j
k
z
)
j
λ
z
e
x
p
[
j
k
2
z
(
x
2
+
y
2
)
]
g(x,y,z)=\frac{exp(jkz)}{j\lambda z}exp[\frac{jk}{2z}(x^2+y^2)]
g(x,y,z)=jλzexp(jkz)exp[2zjk(x2+y2)]
基于卷积定理,公式可进一步表示为:
F
{
U
(
x
,
y
,
z
)
}
=
F
{
U
0
(
x
0
,
y
0
,
0
)
}
F
{
g
(
x
,
y
,
z
)
}
F\{U(x,y,z)\}=F\{U_0(x_0,y_0,0)\}F\{g(x,y,z)\}
F{U(x,y,z)}=F{U0(x0,y0,0)}F{g(x,y,z)}
该式为数值传播算法中的卷积法。
G
(
f
x
,
f
y
,
z
)
=
F
g
(
x
,
y
,
z
)
=
e
x
p
(
j
k
z
)
e
x
p
[
−
j
π
z
λ
(
f
x
2
+
f
y
2
)
]
G(f_x,f_y,z)=F{g(x,y,z)}=exp(jkz)exp[-j\pi z\lambda (f_x^2+f_y^2)]
G(fx,fy,z)=Fg(x,y,z)=exp(jkz)exp[−jπzλ(fx2+fy2)]
角谱法:
U
(
x
,
y
,
z
)
=
F
−
1
{
F
{
U
0
(
x
0
,
y
0
,
0
)
}
G
(
f
x
,
f
y
,
z
)
}
U(x,y,z)=F^{-1}\{F\{U_0(x_0,y_0,0)\}G(f_x,f_y,z)\}
U(x,y,z)=F−1{F{U0(x0,y0,0)}G(fx,fy,z)}