SVD奇异值分解详解

1、定义

假设C是MxN矩阵,U是MxN的矩阵,其中U的列为CCT的正交特征向量,V为NxN矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:

125011_zKfS_2318847.png

然后把的r个对角元素的前k个保留(最大的k个保留), 后面最小的r-k个奇异值置0, 得到∑k;最后计算一个近似的分解矩阵

125129_HyRS_2318847.png

则Ck在最小二乘意义下是C的最佳逼近,∑k低阶近似


2、SVD相关数学概念

1)矩阵的秩,是矩阵中线性无关的行或列的个数

2)对角矩阵,除对角线外所有元素都为0的方阵

3)单位矩阵,如果对角矩阵所有对角线上元素都为1则称单位矩阵

4)特征值,对于一个MxN的矩阵C和向量x,如果存在λ使得Cx=λx,则称λ为矩阵C的特征值,x为矩阵的特征向量


3、SVD的低阶近似原理

考虑如下矩阵S

125327_GrNp_2318847.png

该矩阵的特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量

125349_T05y_2318847.png

假设VT=(2,4,6) 计算S x VT

125424_m32D_2318847.png

125447_KUXY_2318847.png

由上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。


4、SVD的实例

原始文档矩阵C1

125632_tiYK_2318847.png

低阶近似后的矩阵C2

125707_73Zp_2318847.png


转载于:https://my.oschina.net/u/2318847/blog/422542

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值