Matplotlib--legend函数

本文详细介绍了Python数据可视化库Matplotlib中用于添加图例的legend函数,包括其不同调用方式、参数及其作用,如loc、bbox_to_anchor、ncols、fontsize、labelcolor等,帮助理解如何自定义图例的位置、样式和内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matplotlib–legend函数

1. 函数功能

在绘图区放置图例

2. 函数调用方式

2.1 不传入参数:legend()

自动检测图例中显示的元素。在这种情况下,标签从artist中获取。在artist对象创建时指定或者通过artist对象的set_label()方法指定。

import matplotlib.pyplot as plt
import numpy as np

x = [1,2,3,4,5]
y = np.power(x,2)

plt.scatter(x,y,label='figure-scatter')
plt.legend()

plt.show()

在这里插入图片描述

2.2 对已有对象标记图例: legend(labels)

为已经存在的线添加图例,只需要为每个对象添加一个标签,此种方式不推荐使用,因为对象和标签之间的对应关系很容易混淆。

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.arange(5, 0, -1)
y1 = np.array([32, 31, 28, 22, 18])
y2 = np.array([49, 51, 41, 38, 38])

plt.plot(x,y1,marker='o')
plt.plot(x,y2,marker='o')
plt.legend(['y1','y2'])

plt.show()

在这里插入图片描述

2.3 传入一一对象的artist对象与标签:legend(handles, labels)

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0,2.1,0.1)
y1 = np.power(x,3)
y2 = np.power(x,2)
y3 = np.power(x,1)


# 此处的line后面必须加,才能正常输出图例内容,否则显示空白图例框(不明白原因)
line1, = plt.plot(x,y1,ls=':')
line2, = plt.plot(x,y2,ls='--')
line3, = plt.plot(x,y3,ls='-')

plt.legend([line1,line2,line3],['y=x^3','y=x^2','y=x'],loc='upper left')

plt.show()

在这里插入图片描述

3. 函数参数

3.1 参数: loc

3.1.1 loc取值为字符串

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;字符串的取值有多种,具体取值与展示效果如下所示

为了实现对以前版本的兼容性,‘center right’也可以使用参数’right’。除了使用字符串,还可以使用数字代替对应的字符串。

Location StringLocation Code位置
‘best’0合适位置
‘upper right’1右上角
‘upper left’2左上角
‘lower left’3左下角
‘lower right’4右下角
‘right’5右边
‘center left’6左中
‘center right’7右中
‘lower center’8下中
‘upper center’9下中
‘center’10中心
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.arange(5, 0, -1)
y1 = np.array([32, 31, 28, 22, 18])

fig,ax = plt.subplots(3,4,sharex=True,sharey=True)
plt.subplots_adjust(left=0.05,right=0.95,top=0.95,bottom=0.05,
                    wspace=0,hspace=0)
ax[0,0].plot(x,y1,marker='o',lw=1,label='upper left')
ax[0,0].legend(loc='upper left')

ax[0,1].plot(x,y1,marker='o',lw=1,label='upper right')
ax[0,1].legend(loc='upper right')

ax[0,2].plot(x,y1,marker='o',lw=1,label='lower left')
ax[0,2].legend(loc='lower left')

ax[0,3].plot(x,y1,marker='o',lw=1,label='lower right')
ax[0,3].legend(loc='lower right')

ax[1,0].plot(x,y1,marker='o',lw=1,label='upper center')
ax[1,0].legend(loc='upper center')

ax[1,1].plot(x,y1,marker='o',lw=1,label='lower center')
ax[1,1].legend(loc='lower center')

ax[1,2].plot(x,y1,marker='o',lw=1,label='center left')
ax[1,2].legend(loc='center left')

ax[1,3].plot(x,y1,marker='o',lw=1,label='center right')
ax[1,3].legend(loc='center right')

ax[2,0].plot(x,y1,marker='o',lw=1,label='center')
ax[2,0].legend(loc='center')

ax[2,1].plot(x,y1,marker='o',lw=1,label='best')
ax[2,1].legend(loc='best')

ax[2,2].plot(x,y1,marker='o',lw=1,label='默认位置')
ax[2,2].legend()

ax[2,3].plot(x,y1,marker='o',lw=1,label='right')
ax[2,3].legend(loc='right')


plt.show()

在这里插入图片描述

3.1.2 loc取值为坐标元组

当固定字符串的位置,无法满足要求,可以通过loc指定图例位置,此时的坐标位置为绘图区域x轴与y轴数值范围的比例,图例的左下角将放在此坐标位置。通过此参数可以实现在绘图区域内部与外部的图例展示。
图例的位置为二元数组,数组loc=(0,25,0.5),则图例左下角放置在横轴 0.25 ∗ 2 = 0.5 0.25*2=0.5 0.252=0.5,纵轴 0.5 ∗ 8 = 4 0.5*8=4 0.58=4 ( 0.5 , 4 ) (0.5,4) 0.54的位置。

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.arange(0, 16, 2)
y1 = np.arange(0, 8)

fig, ax = plt.subplots(1, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.05, hspace=0)
ax[0].plot(x, y1, marker='o', lw=1, label='中间(0.5,0.5)')
ax[0].legend(loc=(0.5, 0.5))
ax[0].grid(ls=':', lw=1)
ax[0].set_ylim(0, 7)
ax[0].set_xlim(0, 14)

ax[1].plot(x, y1, marker='o', lw=1, label='图形外部')
ax[1].legend(loc=(0, 1))
ax[1].grid(ls=':', lw=1)

plt.show()

在这里插入图片描述

3.2 参数:bbox_to_anchor

此参数与loc参数一起完成对图例的定位,图例参考区域当调用axes.legend()时为绘图区域,当调用figure.legend()时为画布区域,当bbox_to_anchor为4个浮点数组成的元组时,图例的参考区域为bbox_to_anchor确定的数据区域。

3.2.1 bbox_to_anchor为两个浮点数组成的元组

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置,具体如下:

此时将loc与bbox_to_anchor同时使用,表明将图例的loc位置放置在bbox_to_anchor确定的坐标点上
如:

loc=‘center’, bbox_to_anchor=(0.5,0.5),表示图例的中心位置在坐标系的中间位置,即图例的中心在 2 ∗ 0.5 = 1 , 8 ∗ 0.5 = 4 ; ( 1 , 4 ) 2*0.5=1,8*0.5=4;(1,4) 20.5=1,80.5=4;(1,4)的位置

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(1, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.05, hspace=0)
ax[0].plot(x, y1, marker='o', lw=1, label='图例右上角在中间')
ax[0].legend(loc='upper right',bbox_to_anchor=(0.5,0.5),
             borderaxespad=0)
ax[0].grid(ls=':', lw=1)
ax[0].set_ylim(0, 8)
ax[0].set_xlim(0, 10)
ax[0].set_xticks(ticks=np.arange(0,11))


ax[1].plot(x, y1, marker='o', lw=1, label='图形左部中间在指定位置')
ax[1].legend(loc='center left',bbox_to_anchor=(7/10,5/8))
ax[1].grid(ls=':', lw=1)

plt.show()

在这里插入图片描述

3.2.2 bbox_to_anhor为四个浮点数组成的元组

(x, y, width, height),四个参数分别为图例所在参考区域的左下角的坐标位置(x,y),参考区域的宽度与高度(width, height)。图例指定的loc位置位于bbox_to_anchor所确定参考区域的相应位置,如下所示:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(1, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.05, hspace=0)
ax[0].plot(x, y1, marker='o', lw=1, label='框选区域右上角')
ax[0].legend(loc='upper right',bbox_to_anchor=(5/10,4/8,3/10,2/8),
             borderaxespad=0)
ax[0].grid(ls=':', lw=1)
ax[0].set_ylim(0, 8)
ax[0].set_xlim(0, 10)
ax[0].set_xticks(ticks=np.arange(0,11))


ax[1].plot(x, y1, marker='o', lw=1, label='框选区域左部中间')
ax[1].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8))
ax[1].grid(ls=':', lw=1)

plt.show()


在这里插入图片描述

3.3 参数: ncols,fontsize,labelcolor

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表,也可以使用 ‘linecolor’ 或’markerfacecolor’ (or ‘mfc’), 或 ‘markeredgecolor’ (or ‘mec’)去匹配线条或者标记颜色
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

y = np.arange(5, 0, -1)
d1 = np.array([32, 31, 28, 22, 18])
d2 = np.array([49, 51, 41, 38, 38])
d3 = np.array([19, 18, 31, 40, 44])
cont = ['热门话题', '微博热搜', '关注的大V、KOL', '超话社区', '垂直社区']
plt.barh(y, d1, color='b', left=d2 + d3,  # 默认从left=0开始
         tick_label=cont, label='参数互动(%)')
plt.barh(y, d2, left=d3, color='g', label='经常浏览(%)')
plt.barh(y, d3, left=0, color='y', label='较少或偶尔浏览(%)')

for i, j in zip(d3, y):
    plt.text(i / 2, j, '%3.1f%%' % i)

for a, b, c in zip(d3, d2, y):
    plt.text(a + b / 2, c, '%3.1f%%' % b)

for m, n, p, q in zip(d3, d2, d1, y):
    plt.text(m + n + p / 2, q, '%3.1f%%' % p)

plt.title('微博端不同板块的浏览互动情况')

plt.xlim(0, 130)

# print(plt.ylim())
plt.ylim(0, 5.5)

plt.legend(loc='lower center', fontsize=10, ncol=3,
           labelcolor=['b','g','y'])
plt.show()

在这里插入图片描述

文本颜色与线条颜色保持一致,使用下面的代码可以实现与指定颜色相同的效果:

plt.legend(loc='lower center', ncol=3,
           prop=dict(weight='bold', family='LiSu', size=8),
           fontsize=16,
           labelcolor='linecolor')

3.4 参数:prop

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
plt.legend(loc='lower center', ncol=3,
           prop=dict(weight='bold', family='LiSu', size=8),
           fontsize=16,
           labelcolor=['b', 'g', 'y'])
plt.show()

在这里插入图片描述

3.5 参数 numpoints、scatterpoints

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.05, hspace=0)
ax[0,0].plot(x, y1, marker='o', lw=1, label='显示标记点')
ax[0,0].legend(loc='upper right',bbox_to_anchor=(5/10,4/8,3/10,2/8),
             numpoints=2)
ax[0,0].grid(ls=':', lw=1)
ax[0,0].set_ylim(0, 8)
ax[0,0].set_xlim(0, 10)
ax[0,0].set_xticks(ticks=np.arange(0,11))


ax[0,1].plot(x, y1, lw=1, label='不显示标记点')
ax[0,1].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8),
             numpoints=2)
ax[0,1].grid(ls=':', lw=1)

ax[1,0].scatter(x, y1, lw=1, label='显示标记点')
ax[1,0].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8),
             scatterpoints=2)
ax[1,0].grid(ls=':', lw=1)


ax[1,1].scatter(x, y1, lw=1, label='默认情况')
ax[1,1].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8))
ax[1,1].grid(ls=':', lw=1)

plt.show()

在这里插入图片描述

3.6 参数markerscale、markerfirst

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.0, hspace=0)
ax[0,0].plot(x, y1, marker='o', lw=1, label='2倍--标记在前')
ax[0,0].legend(loc='upper right',bbox_to_anchor=(5/10,4/8,3/10,2/8),
             numpoints=2, markerscale=2,markerfirst=True)
ax[0,0].grid(ls=':', lw=1)
ax[0,0].set_ylim(0, 8)
ax[0,0].set_xlim(0, 10)
ax[0,0].set_xticks(ticks=np.arange(0,11))


ax[0,1].plot(x, y1, lw=1,marker='o', label='1倍--标记在后')
ax[0,1].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8),
             numpoints=2, markerscale=1,markerfirst=False)
ax[0,1].grid(ls=':', lw=1)

ax[1,0].scatter(x, y1, lw=1, label='0.5倍--默认标记在前')
ax[1,0].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8),
             scatterpoints=2, markerscale=0.5)
ax[1,0].grid(ls=':', lw=1)


ax[1,1].scatter(x, y1, lw=1, label='默认情况')
ax[1,1].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8))
ax[1,1].grid(ls=':', lw=1)

plt.show()

在这里插入图片描述

3.7 参数 frameon、fancybox、shadow

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
frameon布尔值,是否显示图例边框,默认取值为True:显示
fancybox布尔值,是否绘制圆角边框,默认取值为True:显示
shadow布尔值,是否显示图例的阴影效果,默认取值为False:不显示
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.0, hspace=0)
ax[0,0].plot(x, y1, marker='o', lw=1, label='默认情况')
ax[0,0].legend(loc='upper right',bbox_to_anchor=(5/10,4/8,3/10,2/8),
             )
ax[0,0].grid(ls=':', lw=1)
ax[0,0].set_ylim(0, 8)
ax[0,0].set_xlim(0, 10)
ax[0,0].set_xticks(ticks=np.arange(0,11))


ax[0,1].plot(x, y1, lw=1,marker='o', label='不显示图例边框')
ax[0,1].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8),
               frameon=False)
ax[0,1].grid(ls=':', lw=1)

ax[1,0].scatter(x, y1, lw=1, label='直角边框')
ax[1,0].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8),
             fancybox=False)
ax[1,0].grid(ls=':', lw=1)


ax[1,1].scatter(x, y1, lw=1, label='阴影效果')
ax[1,1].legend(loc='center left',bbox_to_anchor=(2/10,3/8,4/10,4/8),
               shadow=True)
ax[1,1].grid(ls=':', lw=1)

plt.show()

在这里插入图片描述

3.8 参数facecolor、edgecolor

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
frameon布尔值,是否显示图例边框,默认取值为True:显示
fancybox布尔值,是否绘制圆角边框,默认取值为True:显示
shadow布尔值,是否显示图例的阴影效果,默认取值为False:不显示
facecolor图例填充颜色,默认为白色
edgecolor图例边界颜色,默认为白色
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.0, hspace=0)
ax[0, 0].plot(x, y1, marker='o', lw=1, label='默认情况')
ax[0, 0].legend(loc='upper right', bbox_to_anchor=(5 / 10, 4 / 8, 3 / 10, 2 / 8),
                facecolor='y')
ax[0, 0].grid(ls=':', lw=1)
ax[0, 0].set_ylim(0, 8)
ax[0, 0].set_xlim(0, 10)
ax[0, 0].set_xticks(ticks=np.arange(0, 11))

ax[0, 1].plot(x, y1, lw=1, marker='o', label='不显示图例边框')
ax[0, 1].legend(loc='center left', bbox_to_anchor=(2 / 10, 3 / 8, 4 / 10, 4 / 8),
                edgecolor='r')
ax[0, 1].grid(ls=':', lw=1)

ax[1, 0].scatter(x, y1, lw=1, label='直角边框')
ax[1, 0].legend(loc='center left', bbox_to_anchor=(2 / 10, 3 / 8, 4 / 10, 4 / 8),
                facecolor='y', edgecolor='r')
ax[1, 0].grid(ls=':', lw=1)

ax[1, 1].scatter(x, y1, lw=1, label='阴影效果')
ax[1, 1].legend(loc='center left', bbox_to_anchor=(2 / 10, 3 / 8, 4 / 10, 4 / 8),
                )
ax[1, 1].grid(ls=':', lw=1)

plt.show()

在这里插入图片描述

3.9 参数: mode

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
frameon布尔值,是否显示图例边框,默认取值为True:显示
fancybox布尔值,是否绘制圆角边框,默认取值为True:显示
shadow布尔值,是否显示图例的阴影效果,默认取值为False:不显示
facecolor图例填充颜色,默认为白色
edgecolor图例边界颜色,默认为白色
mode取值为expand或None;当取值为expand时,图例将在水平方向扩展填充,填充到参考区域的最后边
x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.0, hspace=0)
ax[0, 0].plot(x, y1, marker='o', lw=1, label='默认情况')
ax[0, 0].legend(loc='upper right',
                bbox_to_anchor=(5 / 10, 4 / 8, 3 / 10, 2 / 8),
                mode='expand')
ax[0, 0].grid(ls=':', lw=1)
ax[0, 0].set_ylim(0, 8)
ax[0, 0].set_xlim(0, 10)
ax[0, 0].set_xticks(ticks=np.arange(0, 11))

ax[0, 1].plot(x, y1, lw=1, marker='o', label='不显示图例边框')
ax[0, 1].legend(loc='upper left', bbox_to_anchor=(2 / 10, 3 / 8),
                mode='expand')
ax[0, 1].grid(ls=':', lw=1)

ax[1, 0].scatter(x, y1, lw=1, label='直角边框')
ax[1, 0].legend(loc=(4 / 10, 4 / 8), mode='expand')
ax[1, 0].grid(ls=':', lw=1)

ax[1, 1].scatter(x, y1, lw=1, label='阴影效果')
ax[1, 1].legend(loc='center left',
                mode='expand')
ax[1, 1].grid(ls=':', lw=1)

在这里插入图片描述

3.10 参数title、title_fontproperties

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
frameon布尔值,是否显示图例边框,默认取值为True:显示
fancybox布尔值,是否绘制圆角边框,默认取值为True:显示
shadow布尔值,是否显示图例的阴影效果,默认取值为False:不显示
facecolor图例填充颜色,默认为白色
edgecolor图例边界颜色,默认为白色
mode取值为expand或None;当取值为expand时,图例将在水平方向扩展填充,填充到参考区域的最后边
title图例标题,默认无标题
title_fontproperties图例标题字体属性
title_fontsize取值为整数或 {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’};图例字体大小,若同时需要设置其他字体属性,使用title_fontproperties属性;fontsize与title_propertiies两个参数不用同时使用
x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.0, hspace=0)
ax[0, 0].plot(x, y1, marker='o', lw=1, label='图例标题')
ax[0, 0].legend(loc='upper right',bbox_to_anchor=(5 / 10, 4 / 8, 3 / 10, 2 / 8),
                title='仅文字大小',title_fontsize=10
              )
ax[0, 0].grid(ls=':', lw=1)
ax[0, 0].set_ylim(0, 8)
ax[0, 0].set_xlim(0, 10)
ax[0, 0].set_xticks(ticks=np.arange(0, 11))

ax[0, 1].plot(x, y1, lw=1, marker='o', label='图例标题')
ax[0, 1].legend(loc='upper left', bbox_to_anchor=(2 / 10, 3 / 8),
                title='仅文字大小',title_fontproperties=dict(size=10))
ax[0, 1].grid(ls=':', lw=1)

ax[1, 0].scatter(x, y1, lw=1, label='图例标题')
ax[1, 0].legend(loc=(4 / 10, 4 / 8), title='文字大小&粗细',
                 title_fontproperties=dict(size=10, weight='bold'))
ax[1, 0].grid(ls=':', lw=1)

ax[1, 1].scatter(x, y1, lw=1, label='图例标题')
ax[1, 1].legend(loc='center left', )
ax[1, 1].grid(ls=':', lw=1)


在这里插入图片描述

3.11 参数 borderpad

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
frameon布尔值,是否显示图例边框,默认取值为True:显示
fancybox布尔值,是否绘制圆角边框,默认取值为True:显示
shadow布尔值,是否显示图例的阴影效果,默认取值为False:不显示
facecolor图例填充颜色,默认为白色
edgecolor图例边界颜色,默认为白色
mode取值为expand或None;当取值为expand时,图例将在水平方向扩展填充,填充到参考区域的最后边
title图例标题,默认无标题
title_fontproperties图例标题字体属性
title_fontsize取值为整数或 {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’};图例字体大小,若同时需要设置其他字体属性,使用title_fontproperties属性;fontsize与title_propertiies两个参数不用同时使用
borderpad图例距离边界框的距离,默认为0.4
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.05, hspace=0)
ax[0, 0].plot(x, y1, marker='o', lw=1, label='默认值0.4')
ax[0, 0].legend(loc='upper right',bbox_to_anchor=(5 / 10, 4 / 8, 3 / 10, 2 / 8),
                borderpad=0.4
              )
ax[0, 0].grid(ls=':', lw=1)
ax[0, 0].set_ylim(0, 8)
ax[0, 0].set_xlim(0, 10)
ax[0, 0].set_xticks(ticks=np.arange(0, 11))

ax[0, 1].plot(x, y1, lw=1, marker='o', label='borderpad=0.8')
ax[0, 1].legend(loc='upper left', bbox_to_anchor=(2 / 10, 3 / 8),
                borderpad=0.8)
ax[0, 1].grid(ls=':', lw=1)

ax[1, 0].scatter(x, y1, lw=1, label='borderpad=0.0')
ax[1, 0].legend(loc=(4 / 10, 4 / 8), borderpad=0.0)
ax[1, 0].grid(ls=':', lw=1)

ax[1, 1].scatter(x, y1, lw=1, label='borderpad=2')
ax[1, 1].legend(loc='center left',borderpad=2 )
ax[1, 1].grid(ls=':', lw=1)


plt.show()

在这里插入图片描述

3.12 参数 labelspacing

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
frameon布尔值,是否显示图例边框,默认取值为True:显示
fancybox布尔值,是否绘制圆角边框,默认取值为True:显示
shadow布尔值,是否显示图例的阴影效果,默认取值为False:不显示
facecolor图例填充颜色,默认为白色
edgecolor图例边界颜色,默认为白色
mode取值为expand或None;当取值为expand时,图例将在水平方向扩展填充,填充到参考区域的最后边
title图例标题,默认无标题
title_fontproperties图例标题字体属性
title_fontsize取值为整数或 {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’};图例字体大小,若同时需要设置其他字体属性,使用title_fontproperties属性;fontsize与title_propertiies两个参数不用同时使用
borderpad图例距离边界框的距离,默认为0.4
lablespacing图例之间的垂直的距离,默认为0.4
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)
y2 = np.power(x,0.5)
fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.05, hspace=0)
ax[0, 0].plot(x, y1, marker='o', lw=1, label='labelspacing=0.5')
ax[0, 0].plot(x, y2, marker='^', lw=1, label='labelspacing=0.5')
ax[0, 0].legend(loc='upper right',bbox_to_anchor=(5 / 10, 4 / 8, 3 / 10, 2 / 8),
                labelspacing=0.5
              )
ax[0, 0].grid(ls=':', lw=1)
ax[0, 0].set_ylim(0, 8)
ax[0, 0].set_xlim(0, 10)
ax[0, 0].set_xticks(ticks=np.arange(0, 11))

ax[0, 1].plot(x, y1, lw=1, marker='o', label='labelspacing=0.8')
ax[0, 1].plot(x, y2, lw=1, marker='^', label='labelspacing=0.8')
ax[0, 1].legend(loc='upper left', bbox_to_anchor=(2 / 10, 3 / 8),
                labelspacing=0.8)
ax[0, 1].grid(ls=':', lw=1)

ax[1, 0].scatter(x, y1, lw=1, label='labelspacing=0.0')
ax[1, 0].plot(x, y1, lw=1, marker='o', label='labelspacing=0.0')
ax[1, 0].legend(loc=(4 / 10, 4 / 8), labelspacing=0.0)
ax[1, 0].grid(ls=':', lw=1)

ax[1, 1].scatter(x, y1, lw=1, label='labelspacing=2')
ax[1, 1].plot(x, y1, lw=1, marker='o', label='labelspacing=2')
ax[1, 1].legend(loc='center left',labelspacing=2 )
ax[1, 1].grid(ls=':', lw=1)


plt.show()

在这里插入图片描述

3.13 参数 handlelength、handleheight、handletextpad

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
frameon布尔值,是否显示图例边框,默认取值为True:显示
fancybox布尔值,是否绘制圆角边框,默认取值为True:显示
shadow布尔值,是否显示图例的阴影效果,默认取值为False:不显示
facecolor图例填充颜色,默认为白色
edgecolor图例边界颜色,默认为白色
mode取值为expand或None;当取值为expand时,图例将在水平方向扩展填充,填充到参考区域的最后边
title图例标题,默认无标题
title_fontproperties图例标题字体属性
title_fontsize取值为整数或 {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’};图例字体大小,若同时需要设置其他字体属性,使用title_fontproperties属性;fontsize与title_propertiies两个参数不用同时使用
borderpad图例距离边界框的距离,默认为0.4
lablespacing图例之间的垂直的距离,默认为0.4
handlelength图例的长度,默认为2.0
handlelheight图例的高度,默认为0.7
handleltextpad图例与图例文本之间的空白距离,默认为0.8
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)
y2 = np.power(x,0.5)
fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.05, hspace=0)
ax[0, 0].plot(x, y1, marker='o', lw=1, label='均为默认值')
# ax[0, 0].plot(x, y2, marker='^', lw=1, label='labelspacing=0.5')
ax[0, 0].legend(loc='upper right',bbox_to_anchor=(5 / 10, 4 / 8, 3 / 10, 2 / 8),
                handlelength=2.0,handleheight=0.7,handletextpad=0.8,
              )
ax[0, 0].grid(ls=':', lw=1)
ax[0, 0].set_ylim(0, 8)
ax[0, 0].set_xlim(0, 10)
ax[0, 0].set_xticks(ticks=np.arange(0, 11))

ax[0, 1].plot(x, y1, lw=1, marker='o', label='改变handlelength')
# ax[0, 1].plot(x, y2, lw=1, marker='^', label='labelspacing=0.8')
ax[0, 1].legend(loc='upper left', bbox_to_anchor=(2 / 10, 3 / 8),
                handlelength=6.0,handleheight=0.7,handletextpad=0.8)
ax[0, 1].grid(ls=':', lw=1)

ax[1, 0].scatter(x, y1, lw=1, label='改变handleheight')
# ax[1, 0].plot(x, y1, lw=1, marker='o', label='labelspacing=0.0')
ax[1, 0].legend(loc=(4 / 10, 4 / 8), handlelength=2.0,handleheight=2,
                handletextpad=0.8)
ax[1, 0].grid(ls=':', lw=1)

ax[1, 1].scatter(x, y1, lw=1, label='改变handletextpad')
# ax[1, 1].plot(x, y1, lw=1, marker='o', label='labelspacing=2')
ax[1, 1].legend(loc='center left',handlelength=2.0,handleheight=0.7,
                handletextpad=3)
ax[1, 1].grid(ls=':', lw=1)


plt.show()

在这里插入图片描述

3.14 参数 borderaxespad、columnspacing

参数含义
loc字符串或反应相对位置的浮点型数据组成的坐标数据;
bbox_to_anchor两个或四个浮点数的元组,与loc参数一起决定图例的展示位置
ncols图例展示为几列,默认展示为1列,为兼容以前版本也可使用ncol,但不推荐
fontsize图例的字体大小,整数或者字符串,取值为整数时,指定字体的大小(单位:磅);取值为字符串时,表示字体相对于默认字体(medium)的大小,字符串取值: {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
labelcolor图例中文本颜色,默认为黑色,取值可以为单个字符串颜色或颜色列表
prop图例的字体属性字典,当该参数存在时,fontsize参数指定的字体大小将不被使用
numpoints绘制折线图时,图例中标记的数量,默认为1个,当绘制折线图标记时才能显示
prop绘制散点图时,图例中标记的数量,默认为1个
markerscale图例中的标记相对于图中的原始大小
markerfirst布尔值,默认取值为True,表示图例中的标记放在标签左边;取值为False表示图例标记放在标签右边
frameon布尔值,是否显示图例边框,默认取值为True:显示
fancybox布尔值,是否绘制圆角边框,默认取值为True:显示
shadow布尔值,是否显示图例的阴影效果,默认取值为False:不显示
facecolor图例填充颜色,默认为白色
edgecolor图例边界颜色,默认为白色
mode取值为expand或None;当取值为expand时,图例将在水平方向扩展填充,填充到参考区域的最后边
title图例标题,默认无标题
title_fontproperties图例标题字体属性
title_fontsize取值为整数或 {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’};图例字体大小,若同时需要设置其他字体属性,使用title_fontproperties属性;fontsize与title_propertiies两个参数不用同时使用
borderpad图例距离边界框的距离,默认为0.4
lablespacing图例之间的垂直的距离,默认为0.4
handlelength图例的长度,默认为2.0
handlelheight图例的高度,默认为0.7
handleltextpad图例与图例文本之间的空白距离,默认为0.8
borderaxespad图例边框与指定位置之间的距离,默认为0.5
columnspacing图例列间距,默认为2.0
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams['font.sans-serif'] = ['KaiTi']
mpl.rcParams['axes.unicode_minus'] = False

x = np.linspace(0, 10, 10)
y1 = np.linspace(0, 8, 10)
y2 = np.power(x,0.5)
fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05,
                    wspace=0.05, hspace=0)
ax[0, 0].plot(x, y1, marker='o', lw=1, label='均为默认值')
ax[0, 0].plot(x, y2, marker='^', lw=1, label='均为默认值')
ax[0, 0].legend(loc='upper right',bbox_to_anchor=(5 / 10, 4 / 8, 3 / 10, 2 / 8),
               ncol=2, borderaxespad=0.5,columnspacing=2.0,
              )
ax[0, 0].grid(ls=':', lw=1)
ax[0, 0].set_ylim(0, 8)
ax[0, 0].set_xlim(0, 10)
ax[0, 0].set_xticks(ticks=np.arange(0, 11))

ax[0, 1].plot(x, y1, lw=1, marker='o', label='改变borderaxespad')
ax[0, 1].plot(x, y2, lw=1, marker='^', label='改变lborderaxespad')
ax[0, 1].legend(loc='upper left', bbox_to_anchor=(2 / 10, 3 / 8),ncol=2,
                borderaxespad=2, columnspacing=2.0)
ax[0, 1].grid(ls=':', lw=1)

ax[1, 0].scatter(x, y1, lw=1, label='改变columnspacing')
ax[1, 0].plot(x, y1, lw=1, marker='o', label='改变columnspacing')
ax[1, 0].legend(loc='center left',ncol=2,
                borderaxespad=0.5,columnspacing=6.0,
                )
ax[1, 0].grid(ls=':', lw=1)

ax[1, 1].scatter(x, y1, lw=1, label='borderaxespad=0.0')
ax[1, 1].plot(x, y1, lw=1, marker='o', label='borderaxespad=0.0')
ax[1, 1].legend(loc='upper right',bbox_to_anchor=(5 / 10, 4 / 8, 3 / 10, 2 / 8),
                ncol=2, borderaxespad=0.0,
                columnspacing=2.0,)
ax[1, 1].grid(ls=':', lw=1)


plt.show()

在这里插入图片描述

官方文档: plt.legend()函数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值