6.2 Characteristic Values

这一章的名字叫Elementary Canonical Forms,翻译过来应该叫初级的规范形式,围绕着如何将一个linear operator以最简单的形式表现出来,或找一个最简单的矩阵under some specific basis。本节讲的是特征值,特征值与对角化紧密联系。
本节中,定义特征值和特征向量之后,还定义了characteristic space associated with 特征值。Theorem 1 说明,特征值c和T-cI是singular以及T-cI行列式为0是等价的,由此定义了矩阵的特征值。这个定理比较重要,因其提供了特征值判断转化为operator可逆性判断和行列式判断的方法,后面证明相似矩阵有相同特征多项式时,用的是行列式性质。
后面是关于对角化的问题,对角化的定义是T有一个characteristic vector basis。通过两个Lemma可以证明Theorem 2 V V V上的operator T T T可对角化和特征多项式的完全分解,以及属于不同特征值的特征空间维数之和等于 dim ⁡ V \dim V dimV等价。这一定理有一个矩阵形式。

Exercises

1.In each of the following cases, let T T T be the linear operator on R 2 R^2 R2 which is represented by the matrix A A A in the standard ordered basis for R 2 R^2 R2, and let U U U be the linear operator on C 2 C^2 C2 represented by A A A in the standard ordered basis. Find the characteristic polynomial for T T T and that for U U U, find the characteristic values of each operator, and for each such characteristic value c c c find a basis for the corresponding space of characteristic vectors.
A = [ 1 0 0 0 ] , A = [ 2 3 − 1 1 ] , A = [ 1 1 1 1 ] A=\begin{bmatrix}1&0\\0&0\end{bmatrix},\quad A=\begin{bmatrix}2&3\\-1&1\end{bmatrix},\quad A=\begin{bmatrix}1&1\\1&1\end{bmatrix} A=[1000],A=[2131],A=[1111]
Solution:
For A = [ 1 0 0 0 ] A=\begin{bmatrix}1&0\\0&0\end{bmatrix} A=[1000], we have:
The characteristic polynomial for T T T is
det ⁡ ( x I − A ) = det ⁡ [ x − 1 0 0 x ] = x ( x − 1 ) \det (xI-A)=\det \begin{bmatrix}x-1&0\\0&x\end{bmatrix}=x(x-1) det(xIA)=det[x100x]=x(x1)
the characteristic values of T T T is c 1 = 0 , c 2 = 1 c_1=0,c_2=1 c1=0,c2=1;
the space of characteristic vectors with characteristic value c 1 c_1 c1 is spanned by ( 0 , 1 ) (0,1) (0,1), the space of characteristic vectors with characteristic value c 2 c_2 c2 is spanned by ( 1 , 0 ) (1,0) (1,0).
The results for U U U is the same as T T T.
For A = [ 2 3 − 1 1 ] A=\begin{bmatrix}2&3\\-1&1\end{bmatrix} A=[2131], we have:
The characteristic polynomial for T T T is det ⁡ ( x I − A ) = det ⁡ [ x − 2 − 3 1 x − 1 ] = x 2 − 3 x + 5 \det (xI-A)=\det \begin{bmatrix}x-2&-3\\1&x-1\end{bmatrix}=x^2-3x+5 det(xIA)=det[x213x1]=x23x+5
There are no characteristic values of T T T.
The characteristic polynomial for U U U is det ⁡ ( x I − A ) = det ⁡ [ x − 2 − 3 1 x − 1 ] = ( x − 3 2 + 11 2 i ) ( x − 3 2 − 11 2 i ) \det (xI-A)=\det \begin{bmatrix}x-2&-3\\1&x-1\end{bmatrix}=\left(x-\frac{3}{2}+\frac{\sqrt{11}}{2}i\right)\left(x-\frac{3}{2}-\frac{\sqrt{11}}{2}i\right) det(xIA)=det[x213x1]=(x23+211 i)(x23211 i)
the characteristic values of U U U is c 1 = 3 2 − 11 2 i , c 2 = 3 2 + 11 2 i c_1=\dfrac{3}{2}-\dfrac{\sqrt{11}}{2}i,c_2=\dfrac{3}{2}+\dfrac{\sqrt{11}}{2}i c1=23211 i,c2=23+211 i;
the space of characteristic vectors with characteristic value c 1 c_1 c1 is spanned by ( 1 2 − 11 2 , − 1 ) \left(\dfrac{1}{2}-\dfrac{\sqrt{11}}{2},-1\right) (21211 ,1), the space of characteristic vectors with characteristic value c 2 c_2 c2 is spanned by ( 1 2 + 11 2 , − 1 ) \left(\dfrac{1}{2}+\dfrac{\sqrt{11}}{2},-1\right) (21+211 ,1).
For A = [ 1 1 1 1 ] A=\begin{bmatrix}1&1\\1&1\end{bmatrix} A=[1111], we have:
The characteristic polynomial for T T T is det ⁡ ( x I − A ) = det ⁡ [ x − 1 − 1 − 1 x − 1 ] = x ( x − 2 ) \det (xI-A)=\det \begin{bmatrix}x-1&-1\\-1&x-1\end{bmatrix}=x(x-2) det(xIA)=det[x111x1]=x(x2)
the characteristic values of T T T is c 1 = 0 , c 2 = 2 c_1=0,c_2=2 c1=0,c2=2;
the space of characteristic vectors with characteristic value c 1 c_1 c1 is spanned by ( 1 , − 1 ) (1,-1) (1,1), the space of characteristic vectors with characteristic value c 2 c_2 c2 is spanned by ( 1 , 1 ) (1,1) (1,1).
The results for U U U is the same as T T T.

2.Let V V V be an n n n-dimensional vector space over F F F. What is the characteristic polynomial of the identity operator on V V V? What is the characteristic polynomial for the zero vector?
Solution: The matrix of the identity operator is I n I_n In and the matrix of the zero operator is 0 0 0 under any basis, thus the characteristic polynomial of the identity operator is det ⁡ ( x I − I ) = ( x − 1 ) n \det(xI-I)=(x-1)^n det(xII)=(x1)n, the characteristic polynomial for the zero vector is det ⁡ ( x I − 0 ) = x n \det(xI-0)=x^n det(xI0)=xn.

3.Let A A A be an n × n n\times n n×n triangular matrix over the field F F F. Prove that the characteristic values of A A A are the diagonal entries of A A A, i.e., the scalars A i i A_{ii} Aii.
Solution: The matrix x I − A xI-A xIA is also triangular, thus det ⁡ ( x I − A ) = ∏ i = 1 n ( x − A i i ) \det (xI-A)=\prod_{i=1}^n(x-A_{ii}) det(xIA)=i=1n(xAii), so all the values which can make det ⁡ ( x I − A ) = 0 \det (xI-A)=0 det(xIA)=0 is the scalars A i i A_{ii} Aii.

4.Let T T T be the linear operator on R 3 R^3 R3 which is represented in the standard ordered basis by the matrix
[ − 9 4 4 − 8 3 4 − 16 8 7 ] \begin{bmatrix}-9&4&4\\-8&3&4\\-16&8&7\end{bmatrix} 9816438447
Prove that T T T is diagonalizable by exhibiting a basis for R 3 R^3 R3, each vector of which is a characteristic vector of T T T.
Solution: We let the above matrix be A A A and compute
det ⁡ ( x I − A ) = ∣ x + 9 − 4 − 4 8 x − 3 − 4 16 − 8 x − 7 ∣ = ∣ x + 9 − 4 − 4 8 x − 3 − 4 0 − 2 x − 2 x + 1 ∣ = ∣ x + 9 − 12 − 4 8 x − 11 − 4 0 0 x + 1 ∣ = ( x + 1 ) ∣ x + 9 − 12 8 x − 11 ∣ = ( x + 1 ) 2 ( x − 3 ) \begin{aligned}\det (xI-A)&=\left| \begin{matrix}x+9&-4&-4\\8&x-3&-4\\16&-8&x-7\end{matrix}\right|=\left| \begin{matrix}x+9&-4&-4\\8&x-3&-4\\0&-2x-2&x+1\end{matrix}\right|\\&=\left| \begin{matrix}x+9&-12&-4\\8&x-11&-4\\0&0&x+1\end{matrix}\right|=(x+1)\left|\begin{matrix}x+9&-12\\8&x-11\end{matrix}\right|\\&=(x+1)^2(x-3)\end{aligned} det(xIA)=x+98164x3844x7

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值