Java处理图像之正片叠底

正片叠底,在Photoshop中是一种混合模式,简单的说就是可以让2个图层的内容融合起来。

融合的计算公式其实非常简单,就是 A*B/255。(A、B是指的图层A和图层B)

再解释一下就是:

A图层中的红色通道和B图层中的红色通道所对应的每一个像素的灰阶值相乘,再被255除。得到一个新的红色通道。 蓝色与绿色通道的操作也是一样的。

某个通道的像素灰阶值其实就可以直接用其对应RGB值来代替,下面用代码来解释下这个过程。

先封装一个根据像素获取对应RGB数组的方法 后面会用到

public static int[] getRGB(int pixel) {
    int r = (pixel >> 16) & 0xff;
    int g = (pixel >> 8) & 0xff;
    int b = pixel & 0xff;
    return new int[]{r, g, b};
}

然后遍历图像像素,遍历过程点省略了,直接进入处理阶段


// 先获取两个图层同一位置的像素值
int pixelA = imgA.getRGB(x, y);
int pixelB = imgB.getRGB(x, y);

// 获取两组RGB数组
int[] rgb1 = getRGB(pixelA);
int[] rgb2 = getRGB(pixelB);

// 根据公式分别计算新的RGB值
int r = rgb1[0] * rgb2[0] / 255;
int g = rgb1[1] * rgb2[1] / 255;
int b = rgb1[2] * rgb2[2] / 255; 

// 获得正片叠底后的像素值
int pixelNew = new Color(r, g, b).getRGB();

拿到新像素后直接设置到新的图片中即可了。

这个方法已经被me封装好了,放到了Nutz的工具栏Images中,可以直接拿来调用,下面给出个Nutz的调用例子,可以拿来修改下直接用。

比如我们给金将军加个太阳:

处理代码:

// 先获取两张图片
BufferedImage imgA = Images.read(new File("金将军.jpg"));
BufferedImage imgB = Images.read(new File("大太阳.jpg"));

// 正片叠底
BufferedImage imgMultiply = Images.multiply(imgA, imgB, 0, 0);

// 输出到文件
Images.write(imgMultiply, new File("大太阳金将军.jpg"));

输出结果图:

当然了,这段代码其实也可以写成一行

Images.write(Images.multiply(Images.read(new File("金将军.jpg")), Images.read(new File("大太阳.jpg")), 0, 0), new File("大太阳金将军.jpg"));

是不是非常简单_^

更多关于图像处理接口可以看Nutz的文档, 或许对你会有帮助。

转载于:https://my.oschina.net/pangwu/blog/1544457

### 使用Python实现图像正片叠底效果 为了实现图像正片叠底(Multiply)效果,可以使用 Python 的 `PIL` 库来操作图像正片叠底是一种常见的图像混合模式,其计算方式是将两个颜色分量相乘并除以最大值 255。 以下是具体的代码示例: ```python from PIL import Image def multiply_blend(top_image_path, bottom_image_path, output_path): # 打开两张图片 top_img = Image.open(top_image_path).convert('RGBA') bottom_img = Image.open(bottom_image_path).convert('RGBA') # 确保两幅图大小一致 if top_img.size != bottom_img.size: raise ValueError("Two images must have the same dimensions") # 获取图像尺寸 width, height = top_img.size # 创建一个新的空白图像用于存储结果 result_img = Image.new('RGBA', (width, height)) # 遍历每一个像素点进行正片叠底运算 for x in range(width): for y in range(height): # 获取顶层和底层对应位置上的RGB值 t_r, t_g, t_b, _ = top_img.getpixel((x, y)) b_r, b_g, b_b, _ = bottom_img.getpixel((x, y)) # 计算新的RGB值 r = int(t_r * b_r / 255) g = int(t_g * b_g / 255) b = int(t_b * b_b / 255) # 将新计算得到的颜色放置到结果图像相应的位置上 result_img.putpixel((x, y), (r, g, b, 255)) # 保存最终的结果图像 result_img.save(output_path) multiply_blend('top.png', 'bottom.png', 'result_multiply.png') # 替换为实际文件路径[^1] ``` 这段程序首先读取顶部和底部输入图像,并确保它们具有相同的分辨率;接着逐个遍历每个像素执行正片叠底公式 `(A × B)/255` 进行色彩融合;最后把处理后的图像保存下来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值