论文研读_基于决策变量分类的多目标多因素遗传算法,用于多目标多任务优化问题(HMOMFMA)

论文研读_基于决策变量分类的多目标多因素遗传算法,用于多目标多任务优化问题

  • 此篇文章为Decision variable classification based multi-objective multifactorial
    memetic algorithm for multi-objective multi-task optimization problem的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正!

摘要

多任务多目标优化问题需要考虑算法的收敛性和种群的多样性。具有不同特征的决策变量的信息传递可能会损害知识重用的效果。本文提出了一种新型混合多目标多因素模因算法来解决这个问题。所提出的变量分类方法将决策变量分类为与收敛性相关的和与多样性相关的决策变量。只有源任务和目标任务中相同类型的决策变量才能传递信息,以避免负面传递。在个体重组过程中,根据决策变量的特性采用不同的进化操作符。此外,所提出的算法将免疫算法作为全局进化操作符和进化梯度搜索算法作为局部搜索操作符融合到多因素框架中,以增强搜索能力。最后,将所提出的算法与最先进的多目标进化多任务算法进行比较。实验结果表明,所提出的算法在经典和复杂的多任务多目标基准测试套件上可以实现有前途的性能。

1. 引言

多目标优化问题(MOPs)需要同时优化多个总是相互冲突的目标,这在现实世界中无处不在 [1–5]。一般而言,假设问题是一个最小化问题,它可以被定义为:

其中 x = ( x 1 , … , x D ) x=(x_1, \ldots, x_D) x=(x1,,xD)表示决策空间 Ω \Omega Ω中具有 D D D维度的决策向量。 F ( x ) = ( f 1 ( x ) , f 2 ( x ) , f 3 ( x ) , … , f M ( x ) ) F(x) = (f_1(x), f_2(x), f_3(x), \ldots, f_M(x)) F(x)=(f1(x),f2(x),f3(x),,fM(x))代表包含 M M M个相互冲突目标函数的目标函数向量。由于目标函数之间存在冲突,优化一个目标函数将不可避免地导致另一个目标函数的恶化。不可能确定一个对所有目标函数都最优的单一解决方案。因此,提出了帕累托优势来确定一组最佳权衡解决方案。给定两个决策向量 x x x y y y,如果对于所有 i ∈ { 1 , 2 , 3 , … , M } i \in \{1,2,3,\ldots,M\} i{1,2,3,,M} f i ( x ) ≤ f i ( y ) f_i(x) \leq f_i(y) fi(x)fi(y),且存在 j ∈ { 1 , 2 , 3 , … , M } j \in \{1,2,3,\ldots,M\} j{1,2,3,,M}使得 f j ( x ) < f j ( y ) f_j(x) < f_j(y) fj(x)<fj(y),则称 x x x在帕累托意义上支配 y y y,记为 x ≺ y x \prec y xy。如果在 Ω \Omega Ω中没有其他解决方案能够支配 x ∗ x^* x,那么 x ∗ x^* x被称为帕累托最优解。所有的帕累托最优解构成了帕累托最优解集(PS)。从PS在目标空间中投影出的目标向量被称为帕累托前沿(PF)。

多目标进化算法(MOEAs)因能在单次运行中获得多个帕累托最优解,而被广泛用于解决多目标优化问题(MOPs)。传统的MOEAs主要可以分为三类:基于支配关系的算法[6–8]、基于性能指标的算法[9–11]以及基于分解的算法[12–14]。基于支配关系的算法主要利用支配关系作为筛选解决方案的依据。改进传统的支配关系是这些算法增加收敛压力的主要思路。基于性能指标的算法通常应用人为设计的指标来评估当前种群的收敛性和多样性,以指导其朝向PS。基于分解的算法通常将复杂的多目标问题分解为若干单目标问题(SOPs)或更简单的多目标问题(MOPs)。这类算法旨在简化问题,采取分而治之的策略。所有传统的MOEAs通常能在传统的MOPs中表现良好,但它们仅设计用于在单次运行中解决一个MOP。面对新问题时,需要重新初始化种群。然而,现实世界中的许多MOPs是相互关联的。解决一个MOP的知识对解决类似问题是有益的。

受到能够并行处理多个任务并灵活运用从不同任务中学习的知识的人类大脑的启发,提出了进化多任务(EMT)以同时优化多个问题[15]。EMT的主要目的是通过转移和重用在优化多任务过程中学习的知识来提高优化效率。EMT非常创新和前瞻性。一经提出,便引起了持续的兴趣,并已成功应用于解决各种实际优化问题[16–19]。在EMT领域,需要解决的问题称为一个任务。同时优化多个任务的问题被称为多任务问题(MTOP)。

当同时优化的任务中存在多目标优化问题(MOPs)时,它被称为多任务多目标优化(MOMTO)问题。与单目标多任务不同,多目标多任务旨在为每个MOP找到一组非支配权衡解决方案,而不是单一的最优点。因此,多目标EMT算法不仅需要考虑种群的收敛性,还需要考虑种群的多样性。在搜索过程中,非支配解应尽可能分散。在MOPs中,不同的决策变量具有其他性特征,一些决策变量与多样性更相关,而一些决策变量与收敛性更相关。与多样性相关的决策变量促进解决方案均匀分散,与收敛性相关的决策变量推动种群朝向PF。在知识转移过程中,决策变量也会将其特性转移至目标任务。当具有不同特性的决策变量进行知识转移时,通常会对种群产生不利影响。

现有的多目标EMT算法常常忽视了这一问题,而且没有研究取得了突破。为了解决这一问题,本文提出了一种新型的混合多目标多因素模因算法(HMOMFMA)。决策变量分类方法被用来根据决策变量对种群收敛性和多样性的贡献,将其分类为与收敛性相关的决策变量和与多样性相关的决策变量。具体来说,只有同一类别的决策变量可以在知识转移阶段进行知识转移。在个体重组阶段,不同类别的决策变量将使用不同的进化算子进行重组

HMOMFMA将免疫算法和进化梯度搜索(EGS)融合到EMT框架中,以增强搜索能力。免疫算法作为全局优化算子使用,通过关注每次迭代中的非支配解,具有强大的收敛能力,并且可以通过偏好选择最大扩展距离下的稀疏解来维持种群多样性。EGS作为局部搜索算子引入,具有自适应变异长度,并且可以根据梯度信息指导个体进化。为了验证HMOMFMA的有效性,对经典MOMTO和复杂MOMTO基准问题进行了全面的实证研究。实验结果表明,提出的HMOMFMA优于现有的最先进的多目标EMT算法。

本文的主要贡献可概括如下:

  1. 提出了一种基于控制变量分析的决策变量分类方法,根据决策变量对种群多样性和收敛性的贡献将其划分为两类。
  2. 提出了一种基于决策变量特性的进化重组策略。首先,在重组过程中根据它们的特性,对决策变量应用两种不同的进化算子。其次,仅在具有相同特性的决策变量之间进行知识转移。
    所提出的HMOMFMA混合了免疫算法和EGS作为全局和局部搜索算子。免疫算法专注于非支配解集中最稀疏的区域,能够很好地维持种群多样性。EGS围绕非支配解进行局部搜索,并通过自适应调整变异长度和根据梯度信息指导进化,加速收敛。
  3. 为评估所提出的HMOMFMA的性能,对经典和复杂的基准测试套件进行了实验。将所提出的HMOMFMA与五种最先进的多目标EMT算法进行比较,包括MOMFEA [35]、MOMFEA-II [26]、EMT-A [32]、MFEA-SADE [36]和MFEA-GHS [37],以及一种经典的MOEA,即NSGA-II [6]。实验结果表明,所提出的HMOMFMA优于其他先进的EMT算法。

本文的其余部分安排如下。第2节回顾了所提算法的相关工作。第3节描述了所提出的HMOMFMA的详细信息。第4节展示了全面的实验,以评估HMOMFMA的有效性。最后,第5节总结了本文并展望了未来的研究方向。

2. 相关工作

2.1. 多因素算法框架

与单目标问题(SOPs)和多目标问题(MOPs)不同,多任务优化问题(MTOPs)可以被视为第三种类型的优化问题范式:同时优化多个问题,并找到与每个问题相对应的最优解。在MTOPs中,每个独立问题称为一个任务,可以是SOP或MOP。假设同时优化了K个最小化任务,多任务优化可以定义为方程式(1)。

其中 T j ( j = 1 , 2 , … , K ) T_j (j = 1,2,\ldots,K) Tj(j=1,2,,K) 表示第 j j j 个优化任务, x j x_j xj 代表分配给第 j j j 个任务的可行解, x j ∗ x^*_j xj 表示第 j j j 个任务的最优解。

受到模因计算和多因素遗传[38]的启发,Gupta等[15]基于模因原理提出了基本的EMT算法框架,即多因素进化算法(MFEA),其中每个任务 T j ∈ { 1 , 2 , … , K } T_j \in \{1,2,\ldots,K\} Tj{1,2,,K}被视为影响K因素环境中个体进化的一个模因因子。为了实现任务之间高效的跨领域遗传物质交换,MFEA提出了统一决策空间策略,该策略将每个个体的决策变量编码到具有相等维数和统一上下界的统一空间中,以解决各任务具有不同维数和每个维度具有不同边界的异构决策空间问题。具体而言,在种群初始化过程中,每个个体将被编码到D维的统一决策空间中,其中 D = max ⁡ { D j ∣ j ∈ { 1 , 2 , … , K } } D = \max\{D_j | j \in \{1,2,\ldots,K\}\} D=max{Djj{1,2,,K}}是所有任务中维数的最大值,且每个维度都缩放到[0,1]之间。通过编码到统一决策空间,一个个体可以被视为不同任务的K个染色体的组合。在解决特定问题时,个体将被解码到相应的目标任务空间中。假设 x ~ i \tilde{x}_i x~i表示统一决策空间中的第i个个体, x i x_i xi代表 x ~ i \tilde{x}_i x~i解码到目标任务空间后的结果。解码过程如方程式(2)所示。

其中 x ¨ i ( 1 : D j ) \ddot{x}_i (1 : D_j) x¨i(1:Dj) 表示统一决策空间中第 i i i 个个体的前 D j D_j Dj 维, D j D_j Dj 是第 j j j 个任务的维数。 U j U_j Uj L j L_j Lj 分别表示第 j j j 个任务的决策变量的上界和下界。 ⊙ \odot 表示哈达玛积(Hadamard product)。

为了评估个体并比较不同任务中个体的性能,对于种群 P P P 中的每一个个体 p i ∈ { 1 , 2 , … , ∣ P ∣ } p_i \in \{1,2,\ldots,|P|\} pi{1,2,,P},有以下定义:

定义 1. (阶乘成本):阶乘成本 ψ i j \psi_{ij} ψij 用于衡量个体 p i p_i pi 在任务 T j T_j Tj 上的性能。当 p i p_i pi 是满足 T j T_j Tj 约束的可行解时, ψ i j \psi_{ij} ψij T j T_j Tj 的目标函数值。否则, ψ i j \psi_{ij} ψij 是一个非常大的实数值,意味着 p i p_i pi 在任务 T j T_j Tj 上不是一个可行解,并将在选择过程中被淘汰。
定义 2. (阶乘排名):阶乘排名 r i j r_{ij} rij 表示 p i p_i pi 解决问题 T j T_j Tj 的适应度。具体来说, r i j r_{ij} rij 是在任务 T j T_j Tj 上按 ψ i j \psi_{ij} ψij 升序排列后 p i p_i pi 的索引。
定义 3. (标量适应度):标量适应度指示 p i p_i pi 在所有任务中能够达到的最佳性能,通过最佳阶乘排名计算,如方程式(3)所示。

定义 4.(技能因子):技能因子 τ i \tau_i τi 代表个体 p i p_i pi 能够解决的最适任务,即 p i p_i pi 达到最佳阶乘排名的任务索引,表示为公式 (4)。

在统一决策空间中的每个个体都可以被解码以致力于特定任务。当种群规模为 N N N,任务数量为 K K K时,每次迭代中的评估次数将是 N × K N \times K N×K,这是不经济的,因为一个解决方案不可能在所有任务上都表现出色。因此,理想情况下,个体应该只在最可能表现良好的选定任务上进行评估。受到模因计算[38]的启发,多因素进化算法(MFEA)提出了垂直文化传播机制来解决这个问题。其主要思想是后代应该通过继承父母偏好的任务,与父母共享相同的模因环境。后代应具有与父母相同的技能因素。这种机制显著提高了函数评估的效率。与为每个个体评估所有任务的情况相比,函数评估的频率减少了 K K K倍。
MFEA为解决多任务优化问题(MTOPs)提供了基础框架和理论,包括统一决策空间机制、解决方案编码与解码方法,以及垂直文化传播的概念。这些概念对后来提出的EMT算法产生了深远的影响。所提出的基于多因素框架的混合多目标多因素进化算法(HMOMFMA)也是基于这一框架。

2.2. 进化多任务

由于EMT是一个新兴的研究领域,研究人员从不同的方面进行了工作。为了探索和发挥EMT的优越性,各种技巧被应用于设计和改进EMT算法。从增强重组策略的角度来看,Liu等人 [20] 提出了一种基于代理的多任务记忆算法,其中代理模型采用高斯过程来预测最优解。Feng等人 [21] 引入了粒子群算法和差分进化(DE)算法进入EMT领域。Song等人 [22] 将动态多子群算法扩展到EMT领域。每个任务被安排在一个独立的子群中,然后每个子群被划分为多个子子群,利用群体智能进行优化。

考虑到识别最合适的源任务,Zhang等人 [23] 引入了由估计的分布算法学习的概率模型,用以表示解的分布,并使用Wasserstein距离评估任务间的相似性。Chen等人 [24] 引入了一种档案策略和累积奖励机制,通过计算档案的Kullback-Leibler散度来衡量任务的相似性。Huang等人 [25] 使用协方差矩阵来表征特定任务历史解的分布,并通过协方差矩阵的相似性选择最合适的任务。

至于调整知识传递频率,Bali等人 [26] 提出了一种数据驱动的在线学习方法来优化传递强度。Zheng等人 [27] 提出了一种名为“能力向量”的新概念,用于动态测量任务之间的相关性,以自动调节搜索过程中的传递强度。Li等人 [28] 提出了一种自适应传递强度策略,其中知识传递强度与传递成功率正相关。

在合理分配搜索资源的观点基础上,Gong等人[29]提出了一种基于问题难度的动态在线资源分配策略,更复杂的问题将获得更多的计算资源。Yao等人[30]提出了一种基于分解和动态资源分配策略的EMT算法,收敛速度更快的任务将被分配更多的计算资源。Wen等人[31]提出,当知识转移开始失败时,应该重新分配计算资源。
关于搜索空间映射,Feng等人[32]提出了一种基于去噪自编码器(EMT-A)的新颖任务映射机制,其中源任务的解决方案可以通过去噪自编码器学习的映射矩阵投影到目标任务上。Bali等人[33]提出了一种线性化领域适应方法,将简单任务的搜索空间转换为与复杂任务高度相关的重建空间。Ding等人[34]引入了一种新颖的决策变量转换策略,将不同任务的解决方案映射到统一空间中。
至于多目标多任务,这一领域的研究仍处于起步阶段,相关文献不多。Gupta等人[35]首次将EMT理论引入多目标优化领域,并提出了多目标多因素优化算法(MOMFEA)。MOMFEA将经典的多目标进化算法NSGA-II嵌入到精彩的EMT算法框架多因素进化算法中,通过类比模因计算中的文化构建块传输来优化多个MOPs。Liang等人[36]开发了一种基于子空间对齐和自适应差分进化的新型多目标多因素算法,命名为MOMFEA-SADE。在MOMFEA-SADE中,引入了通过子空间对齐策略获得的映射矩阵来转换搜索空间,以降低负面转移的概率,并应用了改进的自适应差分进化作为重组操作符,以提高搜索效率。Liang等人[37]将两种新颖策略——遗传转换和超矩形搜索融合到一种EMT算法中,即MFEA-GHS,该算法在多目标多任务中已证明其卓越性能。遗传转换策略通过构建映射向量来转换搜索空间,提高知识转移的效率。基于对立学习构建的超矩形方法致力于扩大每个子空间的搜索能力。

2.3. 动机

  • 图 1. 实验展示了使用不同策略的信息传递对目标任务决策变量和目标函数值的影响。 (a) 当信息传递发生在与收敛相关的决策变量上后,这些决策变量的值。 (b) 当信息传递发生在与收敛相关的决策变量上后,目标值。 © 当信息传递发生在与多样性相关的决策变量上后,这些决策变量的值。 (d) 当信息传递发生在与多样性相关的决策变量上后,目标值。

在多任务优化问题(MTOPs)领域,当前大多数算法通常以相同的方式对待个体的所有决策变量,并随机选择维度进行信息传递,而忽略了不同决策变量的特性及其对个体的影响。在大多数多目标优化问题(MOPs)中,决策变量通常可以分为与多样性相关的决策变量和与收敛相关的决策变量。[46] 与多样性相关的决策变量致力于解的均匀分布,而与收敛相关的决策变量致力于收敛到最优点。在MTOPs中,如果目标任务中的收敛相关决策变量与源任务中的与多样性相关决策变量之间发生信息传递,目标种群中该维度的决策变量之间的距离将增加,这不利于目标任务的收敛。如果目标任务中的与多样性相关决策变量与源任务中的收敛相关决策变量之间发生信息传递,目标种群中该维度的决策变量之间的距离将缩小。这不利于目标任务解的均匀分布。

为了说明相同类型和不同类型的决策变量在信息传递过程中对EMT效率的影响,我们在经典的MOMTO基准测试套件[40]中对CIHS问题进行了实验,如图1所示。 CIHS-T1被采用为源任务,而CIHS-T2则被采用为目标任务。每个任务都是一个包含50个决策变量的双目标优化问题。在算法的早期和中期阶段,为了保证公平性,未激活信息传递方法。不同的传递策略被应用于最后一代种群。

在CIHS1和CIHS2中,第一个决策变量都与多样性相关,而其余决策变量都与收敛相关。图1(a)展示了与收敛相关的决策变量和与多样性相关的决策变量在源任务中的信息传递以及目标任务中与收敛相关的决策变量的结果。当与收敛相关的决策变量将信息传递给与收敛相关的决策变量时,目标任务仍然保持显著的收敛性。但是,当源任务中与多样性相关的决策变量与目标任务中与收敛相关的决策变量共享信息时,目标任务的与收敛相关的决策变量将扩散到周围。直接的结果是目标空间中的解不会收敛到真实的PF。图1(b)展示了由上述两种传递策略进行的目标空间中解的不同表现。图1©说明了在源任务中与收敛相关的决策变量和与多样性相关的决策变量以及目标任务中与多样性相关的决策变量之间的信息传递的结果。可以看出,在目标任务中的与多样性相关的决策变量和源任务中的收敛决策变量共享信息后,目标任务中个体之间的距离变小。在由与收敛相关的决策变量共享信息后,目标任务中与多样性相关的决策变量的标准差为3.113E-1,而在由与多样性相关的决策变量共享信息后为3.124E-1。图1(d)通过对比目标空间中种群的表现来说明这一点。从与多样性相关的决策变量获取信息后,解的IGD值为2.471E-4,优于从与收敛相关的决策变量获取信息的解,其IGD值为2.805E-4。因此,我们可以得出结论,信息传递应该使用源任务和目标任务中相同类型的决策变量进行,这有利于EMT的效果。相反,使用不同类型的决策变量进行信息传递可能导致负面传递。

因此,如果算法能够首先根据与多样性或收敛相关的特性对决策变量进行分类,然后根据决策变量的类别执行相应的传递方法,信息传递的效果可以显著提高。本文提出了一种改进而高效的方式,基于控制变量分析对决策变量进行分类,将其划分为多样性和收敛两个类别。

3. 提出的方法

3.1. HMOMFMA的整体框架

应高效利用不同决策变量的特性来提高信息传递的效率。基于这一思想,在提出的HMOMFMA中,每个任务的决策变量将根据其对种群多样性和收敛性的贡献被分类为与多样性相关的决策变量和与收敛性相关的决策变量。在生成新个体时,将根据决策变量的类型应用不同的进化算子。为了加速收敛并保持多样性,提出的HMOMFMA融合了免疫算法[39],专注于每一代中分布稀疏的非支配解。提出的HMOMFMA还结合了EGS作为局部搜索算子以提高搜索能力。提出的HMOMFMA的整体框架在算法1中总结。

  • 算法 1. HMOMFMA的整体框架。


首先,与经典的EMT算法不同,HMOMFMA根据决策变量对收敛性和多样性的贡献将其分类为两种类型。这一策略根本上决定了应用于特定决策变量的进化算子,该分类方法的详细描述在3.2节中呈现。然后初始化种群,并根据统一决策空间机制对每个个体进行编码。所有个体将被均匀地分配到每个任务中。每个个体将设置相应的技能因子并在其任务中进行评估。之后,将从每个任务中挑选出非支配解以形成表示为 ( P_N ) 的非支配种群。除了确保收敛性,多样性在迭代过程中至关重要,因此应更多地关注种群的稀疏区域。基于这一点,从 ( P_N ) 中选择目标空间分布最稀疏的 ( N_A ) 个解以形成活跃种群 ( P_A ) 作为克隆种群 ( P_C ) 的父代。个体的稀疏度通过最大扩展距离(MED)来评估,已被证明是评估解密度的一种有效且有用的方法,其中较大的MED值表示解在目标空间中离其他解更远。MED的具体计算方法在算法2中展示。

所提出的HMOMFEA遵循免疫算法的核心思想,即克隆选择机制,这一机制受到免疫学中抗体细胞大量无性繁殖和有丝分裂的启发[47]。在免疫系统中,后代细胞的基因与亲本细胞的基因相同,这可以增强与抗原的结合[48]。克隆选择机制认为,更好的解决方案应获得更多的克隆资源,其目的是围绕优秀解决方案产生更多的局部搜索[49]。克隆资源的分配是根据个体在 P A P_A PA中的MED值进行的,MED值越大,可以获得的克隆资源越多。克隆选择的数学模型如方程(5)所示。

其中运算符 ⊗ \otimes 表示克隆操作符,参数 h i h_i hi 表示在活跃种群 P A P_A PA 中每个解 a i a_i ai 的克隆数量。接下来, P C P_C PC 中的个体将经历重组和局部搜索,以生成后代种群 P C ′ P_C' PC P C P_C PC 中的所有个体将被重组,当达到局部搜索阈值时, P C P_C PC 中的 r r r 个个体将执行局部搜索。局部搜索采用EGS策略,如第3.4节所述。重组可以分为任务内重组和任务间信息传递,根据决策变量的类型使用不同的进化算子进行重组,如第3.3节所示。之后,按照EMT中的垂直文化传播规则, P C ′ P_C' PC 中的每个个体被分配一个技能因子,并在相应的任务上进行评估。最后,合并当前代的 P C ′ P_C' PC P N P_N PN,挑选出所有非支配解,形成下一代的新 P N P_N PN

  • 算法 2. 最大扩展距离。

3.2. 决策变量分类方法用于信息传递

提出的决策变量分类方法的具体伪代码如算法3所示。

  • 算法3:提出的决策变量分类方法。

首先,初始化一个用于控制变量分析的模板解。其所有维度被设置为特定任务中相应维度的上下界均值,如第3行所示。 u i u_i ui l i l_i li 分别代表此任务中第i个决策变量的上界和下界。接着,基于模板解,生成NS个在第i维度上具有不同值但其他维度保持不变的解,以执行第i维度的控制变量分析,如第8行所示,并将这些解保存到归档集S中。然后,基于支配关系比较归档集S中的解。假设 n j n_j nj(表示在归档中支配第j个个体的个体数量)为零,那么这意味着归档集S中不存在能够支配 s i s_i si 的解,且 s i s_i si 位于非支配前沿。一旦发现这样一个非支配解,非支配解的总数NF加一,其中NF表示归档集S中非支配解的总数。最后,如果NF等于一,第i维决策变量将被认为与收敛相关,其索引i存储在IC集中。否则,第i维决策变量被视为与多样性相关,其索引i存储在ID集中。

3.3. 基于决策变量特性的重组

有效利用不同决策变量的特性可以加速算法的收敛并确保种群的多样性。提出的HMOMFMA对与多样性相关和与收敛性相关的决策变量应用不同的重组算子。对于与多样性相关的决策变量,后代应远离父代。对于与收敛性相关的决策变量,后代应靠近父代并在父代周围进行局部搜索。因此,差分进化算子是多样性决策变量的重组算子。DE算子将利用种群中随机选取的两个额外解的信息来优化当前解,生成的后代与父代的相似度较低。对于收敛决策变量,应用SBX算子作为重组算子,生成的后代靠近父代,可以在局部范围内挖掘更有前景的解,同时确保算法的有效收敛。图2展示了两种算子分别生成的后代的直方图示例,其中父代 (x_1) 和 (x_2) 的值分别为0.3和0.7,DE算子中第三个父代 (x_3) 的值从决策空间中随机选取。SBX中的参数 (\eta) 设置为20,DE中的参数 (F) 设置为1,两种算子分别进行了100次测试。
如果在后代生成过程中能有效利用其他任务的知识,可以显著提高优化目标任务的效率。这是EMT算法的主要优势和本质特征。因此,在提出的HMOMFMA中,使用遗传映射转移策略[37]将统一决策空间中相距较远的个体映射到靠近目标任务的区域。遗传映射转移策略可以显著提高源任务的信息传递效率并减少负面转移。其数学表达式如公式(6)所示。

在目标任务中, x i t a r g e t x_i^{target} xitarget 代表转移维度,而 x i t a r g e t ‾ \overline{x_i^{target}} xitarget表示该维度的平均值。在源任务中, X j s o u r c e \mathcal{X}_j^{source} Xjsource 表示转移维度, X j s o u r c e ‾ \overline{\mathcal{X}_j^{source}} Xjsource 是该维度的平均值,而 ε ˉ \bar{\varepsilon} εˉ 表示一个微小的实数值。需要注意的是,目标任务和源任务的转移维度不是一一对应的,而是根据决策变量的特性进行选择。当进行重组时,如果检测到父代的技能因子不一致,将激活遗传映射转移策略来进行信息传递。需要特别注意的一点是,由于与收敛性相关的决策变量需要在父代附近进行局部搜索,因此不宜无差别地接收其他任务的所有信息。提出的HMOMFMA继承了MOMFEA中的随机交配概率(rmp)概念。当满足rmp时,可以对与收敛性相关的决策变量执行跨任务知识转移。如果父代的技能因子相同,则直接进行重组,而不激活遗传映射转移策略。完成重组后,如果满足突变条件,则多项式突变会改变决策变量。基于决策变量特性的重组方法的伪代码如算法4所示。

  • 算法 4. 基于决策变量特性的重组方法。

3.4. 基于进化梯度搜索的局部搜索

为了有效地在高质量解附近寻找更好的解决方案,即分布稀疏的非支配解,HMOMFMA结合了全局搜索和局部搜索。免疫算法作为全局搜索优化器,而EGS作为局部搜索优化器。EGS的基本思想是利用进化过程中获得的梯度信息指导种群向最优解移动。在单目标优化问题(SOPs)中,通常使用目标函数值的偏差作为梯度信息。在多目标优化问题(MOPs)中,结合种群致力于接近PF并均匀分布的特性,提出的HMOMFMA应用规范化目标函数值的平均值作为适应度 (F(x)) 来评估个体的性能,以在迭代过程中获得梯度信息。HMOMFMA中EGS的具体伪代码如算法5所示。

  • 算法 5. 基于进化梯度搜索的局部搜索。

EGS主要包括两个步骤:通过进化估计梯度方向和使用梯度下降法更新解。为了估计梯度方向,首先生成L个试验解 r i r_i ri,通过正态分布 N ( 0 , σ t 2 ) N(0, \sigma_t^2) N(0,σt2) 扰动父代,其中 σ t \sigma_t σt 控制变异强度。然后,根据垂直文化传播原则,将技能因子分配给 r i r_i ri 并进行评估。梯度计算需要一个单一的适应度指标。这里使用标准化目标值的平均值作为适应度值。之后,根据第8行所示的方法计算梯度。接下来,使用梯度下降法生成后代解 o o o,如第 9 行所示。然后,根据父代个体 a ˘ \breve{a} a˘ 与后代个体 o o o 之间的支配关系,更新变异步长 σ t \sigma_t σt 。如果后代 o o o 能够支配父代 a ˘ \breve{a} a˘ ,那么当前的 a ˘ \breve{a} a˘ 将被后代 o o o 替换,并且 σ t \sigma_t σt 会乘以系数 ε \varepsilon ε 。否则, σ t \sigma_t σt 将除以系数 ε \varepsilon ε ,其中系数 ε \varepsilon ε 通常设置为 1.8 [41]。最后,当局部搜索次数达到 LST 时,局部搜索过程终止,并将最终个体 a ˘ \breve{a} a˘ 输出作为局部搜索的结果。

根据符号O的操作规则,所提出的HMOMFMA的时间复杂度可以简化为 O ( m × ( N D + N C ) 2 × L S × L S T × r × L × N D ) O(m \times (N_D + N_C)^2 \times LS \times LST \times r \times L \times N_D) O(m×(ND+NC)2×LS×LST×r×L×ND)。然而,考虑到局部搜索使用的次数和概率非常小,在实际使用中,算法的速度不会显著降低。

4. 实验

4.1. 测试套件介绍

在多任务优化问题(MTOPs)中,适应度景观的相似性和最优解的交叉程度是影响任务间遗传信息传递有效性的两个最重要因素。如果不同任务的最优解对应维度的值更接近,则任务间的遗传信息传递更有利于优化。同样地,不同任务的优化函数的适应度景观越相似,个体从源任务学到的知识就能间接地帮助优化目标任务。根据全局最优解的交叉程度,经典的多目标多任务优化(MOMTO)基准测试问题被设计成三个类别:完全交叉(CI)、部分交叉(PI)和无交叉(NI)。根据适应度景观的相似性,经典的MOMTO基准测试问题可以被划分为高相似性(HS)、中等相似性(MS)和低相似性(LS)三个类别。经典的MOMTO基准套件由结合以上两种分类策略的九个连续多目标问题组成。关于经典MOMTO基准测试套件的详细信息,可以在文献[40]中找到。名为CPLX的复杂MOMTO基准测试套件首次在2019年IEEE CEC关于进化多任务优化的竞赛中介绍[42],这比经典测试套件更具挑战性。它的子问题是根据文献[43]设计的。

4.2. 比较的算法

本文提出的 HMOMFMA 将与五种最先进的多目标EMT算法进行比较,这些算法分别是MOMFEA [35]、MOMFEA-II [26]、EMT-A [32]、MFEA-SADE [36]和MFEA-GHS [37],以及一种经典的多目标进化算法(MOEA),即NSGA-II [6]。MOMFEA [35] 是最早和最经典的多目标EMT算法,可以被视为多目标EMT算法的基准。著名的NSGA-II [6] 是MOMFEA应用多任务理论处理多目标优化问题(MTOPs)的基础。通过比较MOMFEA和NSGA-II的性能,可以展示多目标EMT算法相比传统MOEA的优势,因此NSGA-II也作为一个比较算法被纳入。MOMFEA-II [26] 应用了数据驱动的在线学习方法,在搜索过程中优化转移强度,以解决多目标多任务优化问题(MOMTO)并减少负面转移。EMT-A [32] 在MFEA中应用去噪自编码器来映射不同任务的决策空间。MFEA-SADE [36] 将子空间对齐策略和自适应差分进化算子引入MFEA。MFEA-GHS [37] 是MFEA的改进版本,引入了遗传变换和超矩形搜索策略。所有算法均使用Jmetal 4.5.2 [45]实现。算法运行的平台是一台配备Intel Core i5-9400F CPU 2.90 GHz和16.00 GB RAM的PC。

4.3. 参数设置

为了进行公平比较,在MOMFEA、MOMFEA-II、EMT-A、MFEA-SADE和MFEA-GHS中,种群大小被设置为200,但在NSGA-II中,每个任务的种群大小被设置为100。对于EMT算法,最大适应度评估次数为200,000,但对于传统的多目标进化算法(MOEA)如NSGA-II,每个任务的最大评估次数被设置为100,000。比较算法的参数设置与原始论文一致。所有参数设置的详细信息汇总在表1中。

4.4. 性能指标

对于每个基准问题,在三目标任务中抽取10,000个点,在两目标任务中抽取1,000个点,对真实PF进行采样以评估反向世代距离(IGD)[44]。IGD指标衡量真实PF与获得解决方案中最近个体之间的距离。该指标可表示为等式7。其中 D i s t i Dist_i Disti是真实PF中第i个解与获得解决方案中最近个体之间的欧几里得距离, N P F N_{PF} NPF是采样点的数量。IGD值越低,种群的收敛性和多样性越好。

4.5. 经典MOMTO基准测试套件上的性能

经典MOMTO基准测试套件的实验结果显示在表2中。展示了每种算法进行20次独立运行的IGD值的平均值和标准差,每个子问题上的最佳结果以灰色标记。对实验结果应用了95%置信水平的Wilcoxon秩和检验,以比较所提出的HMOMFMA与其他比较算法。显著更好、显著更差和不可比较的结果分别用“+”、“-”和“=”表示。在经典MOMTO基准测试套件中,多目标EMT算法在大多数基准测试问题上可以击败经典单任务多目标进化算法NSGA-II。这主要归因于EMT算法的知识共享和转移机制,表明多任务优化理论确实有效。从表2可以看出,与最先进的多目标进化算法MOMFEA、MOMFEA-II、EMT-A、MFEA-SADE、MFEA-GHS和NSGA-II相比,就IGD指标而言,所提出的HMOMFMA在复杂MOMTO测试套件的20个子问题中分别在15、15、13、15、16和16个问题上获得了优越的结果。
关于经典MOMTO基准测试套件,所提出的HMOMFMA在高相似性(HS)问题上表现最佳,例如CIHS-T1、PIHS、NIHS。这是因为HMOMFMA根据决策变量对种群多样性和收敛性的贡献进行分类,并且只在任务间转移相同类型决策变量的知识,这使得算法不干扰目标任务的阶段性结果,能有效提高知识重用率。当两个同时优化的任务具有高度相似性时,这种策略可以显著增强算法性能。对于相似性低的问题,如PILS和NILS-T2,即使最优点的重合度不高,基于EGS的局部搜索策略也能不断挖掘出潜在的更好解,推动种群前进。因此,HMOMFMA在这些问题上也取得了显著优势。

4.6. 复杂MOMTO基准测试套件上的性能

复杂MOMTO基准测试套件的实验结果展示在表3中。展示了每种算法进行20次独立运行的IGD值的平均值和标准差,每个子问题上的最佳结果以灰色标记。对实验结果应用了95%置信水平的Wilcoxon秩和检验,以比较所提出的HMOMFMA与其他比较算法。从表3可以看出,与最先进的EMT算法MOMFEA、MOMFEA-II、EMT-A、MFEA-SADE和MFEA-GHS相比,在IGD指标方面,所提出的HMOMFMA在复杂MOMTO测试套件的20个子问题中分别在18、20、14、13和20个问题上获得了优越的结果。与NSGA-II相比,所提出的HMOMFMA在所有子问题上都取得了更好的结果。
所提出的HMOMFMA之所以能在复杂MOMTO基准测试套件上取得如此好的结果,是因为基于决策变量分类的知识转移方法可以减少不同类型决策变量在任务间转移知识时造成的干扰。所提出的HMOMFMA将免疫算法和EGS分别作为全局和局部搜索操作符。免疫算法具有强大的收敛性能,并通过克隆资源分配保持种群多样性。相比之下,EGS具有良好的局部搜索性能,可以通过调整变异长度并根据梯度信息指导进化来加速收敛。全局搜索和局部搜索的协作可以显著提高算法的收敛能力,使HMOMFMA在复杂MOMTO基准测试套件上表现最佳。

4.7. 提出策略的讨论

本节讨论每项提出策略对所提算法性能的贡献。表4显示了在经典和复杂的MOMTO基准测试集上对决策变量分类的结果。表5分别展示了在经典MOMTO基准测试集上,带有不同操作符的多目标EMT进化策略算法的IGD值。每个算法独立运行20次的平均指标值被展示出来,每个子问题的最佳结果以灰色标出。此外,对实验结果应用了95%置信水平的Wilcoxon秩和检验,以比较提出的HMOMFMA与其他比较算法。显著更好、显著更差和不可比的结果分别用“+”、“-”和“=”表示。MOMFMA仅使用多目标多因素免疫算法。MOMFMA-DVC将基于决策变量特征的进化重组策略应用于MOMFMA。MOMFMA-LS将EGS作为局部搜索操作符混合到MOMFMA中。比较算法的参数是一致的。从表5可以看出,MOMFMA-DVC和MOMFMA-LS在18个子问题上的算法结果优于MOMFMA。这证明了基于决策变量特征的进化重组策略和作为局部搜索操作符的EGS是有效的。并且这两种策略的结合可以大大提升算法的性能。

4.8. 参数敏感性分析

为了确保所提算法使用的参数设置合理,在本节中,分析了算法中局部搜索操作符涉及的参数LS和r。在经典的多目标多任务优化基准测试集上进行了比较实验。每个算法独立运行20次的平均值被展示出来,每个子问题的最佳结果以灰色标出。此外,对实验结果应用了95%置信水平的Wilcoxon秩和检验,其中显著更好、显著更差和不可比分别用“+”、“-”和“=”表示。经典MOMTO基准测试集的IGD值分别列在表6和表7中。

5. 结论

本文提出了一种新颖的多目标优化进化多任务算法,即HMOMFMA,它通过融合决策变量分类方法、多目标免疫算法和进化梯度搜索。决策变量分类方法用于将决策变量分类为与收敛和多样性相关的决策变量。在重组和信息传递过程中,将对不同的决策变量采用独特策略。这有助于提高多任务优化中信息传递的效率并加速收敛。免疫算法专注于种群中分布最稀疏的非支配解,具有强大的收敛能力,并能保证种群的多样性。作为局部搜索操作符,引入了进化梯度搜索方法,该方法可以通过自适应调整变异长度并根据梯度信息指导进化来加速收敛。在经典和复杂的MOMTO测试套件上进行了全面实验。所提出的HMOMFMA与五种最先进的多目标EMT算法MOMFEA [35]、MOMFEA-II [26]、EMT-A [32]、MFEA-SADE [36]和MFEA-GHS [37]以及一种经典的MOEA,即NSGA-II [6]进行了比较。实验结果表明,所提出的HMOMFMA优于其他先进的EMT算法。
然而,未来工作中仍可以考虑一些问题。首先,所提出的HMOMFMA可以扩展到同时优化三个或更多任务。应设计可以从多个任务中选择最合适的任务进行转移的模块。其次,决策变量分类方法可以改进,而且在进化迭代过程中也可以考虑动态分类。接下来,所提出的HMOMFMA主要解决一般性MOPs。改进后的HMOMFMA还可以解决昂贵的MOPs、动态MOPs、大规模MOPs、多模态MOPs以及其他更复杂的问题。最后,所提出的HMOMFMA中的信息传递方法可以进一步改进,以减少负面转移。

  • 26
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值