机器学习读书笔记(一)

机器学习分类

机器学习算法主要分为三种,监督学习(supervised learning)、无监督学习(unsupervised learning)和强化学习(reinforcement learning)。
监督学习有标签,用于预测结果或未来。
无监督学习无标签,用于寻找数据潜在结构。
强化学习有决策过程和奖励系统,用于学习一系列动作。

监督学习

监督学习是在训练数据和数据标签中进行机器学习,生成模型,然后将该模型用于新的数据去预测其标签。
监督学习包括分类预测 classification 和回归预测 regression。

强化学习

强化学习有决策过程和奖励反馈,可以解决与环境的交互问题。

无监督学习

在没有标准答案的情况下进行无监督学习,可以发现数据内存在的潜在结构。

降维

降维(dimensionality reduction)是无监督学习的另一种形式。

Roadmap 路线图

构建机器学习系统的路线图包含四个部分。Preprocessing 预处理;Learning 学习;Evaluation 评估;Prediction 预测。
Preprocessing 预处理:数据缩放、分类数据独热化、降维、数据分割成训练集和测试集或验证集等。
Learning 学习:选择算法模型,交叉验证,性能矩阵,超参数优化。
Evaluation 评估:形成最终模型,评价其最佳性能。
Prediction 预测:在新数据上,或者在测试集上进行预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

clancy_wu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值