机器学习分类
机器学习算法主要分为三种,监督学习(supervised learning)、无监督学习(unsupervised learning)和强化学习(reinforcement learning)。
监督学习有标签,用于预测结果或未来。
无监督学习无标签,用于寻找数据潜在结构。
强化学习有决策过程和奖励系统,用于学习一系列动作。
监督学习
监督学习是在训练数据和数据标签中进行机器学习,生成模型,然后将该模型用于新的数据去预测其标签。
监督学习包括分类预测 classification 和回归预测 regression。
强化学习
强化学习有决策过程和奖励反馈,可以解决与环境的交互问题。
无监督学习
在没有标准答案的情况下进行无监督学习,可以发现数据内存在的潜在结构。
降维
降维(dimensionality reduction)是无监督学习的另一种形式。
Roadmap 路线图
构建机器学习系统的路线图包含四个部分。Preprocessing 预处理;Learning 学习;Evaluation 评估;Prediction 预测。
Preprocessing 预处理:数据缩放、分类数据独热化、降维、数据分割成训练集和测试集或验证集等。
Learning 学习:选择算法模型,交叉验证,性能矩阵,超参数优化。
Evaluation 评估:形成最终模型,评价其最佳性能。
Prediction 预测:在新数据上,或者在测试集上进行预测。