conda 实践

1. 环境部署

1.1. 下载 anaconda 安装包

下面这个网址查找自己需要的版本
https://repo.anaconda.com/archive/
或者手动下载。
wget https://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.sh

1.2. 执行安装程序

#安装依赖:
sudo yum install bzip2

chmod +x Anaconda3-5.3.0-Linux-x86_64.sh
./Anaconda3-5.3.0-Linux-x86_64.sh

接着一直点回车,直到出现“yes”or“no“,输入yes添加环境变量,这样anaconda就安装好了。出现Thank you for installing Anaconda3! 代表安装成功。
conda_install
最后生效环境变量配置:

source ~/.bashrc

命令行即可出现 conda

1.3. 升级conda

conda update conda
conda update --all   	# 升级全部库

1.4. 切换源

conda config --add channels 切换源

# 清华源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
# 下面这个我没用过, 可以添加一下试试看.
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/

conda config 执行完实际效果为 ~/.condarc 文件添加项。

vim ~/.condarc
channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
show_channel_urls: true

如果前两步替换源不行,可以试试延长下载时间:
方式1:命令行conda config --set remote_read_timeout_secs 1000.0
方式2:找到.condarc文件,添加remote_read_timeout_secs: 1000.0
参考:https://blog.csdn.net/qq_46061090/article/details/129008732
其他源

目前国内提供conda镜像的大学清华大学: 
https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
北京外国语大学:
https://mirrors.bfsu.edu.cn/help/anaconda/
南京邮电大学:
https://mirrors.njupt.edu.cn/
南京大学:
http://mirrors.nju.edu.cn/
重庆邮电大学:
http://mirror.cqupt.edu.cn/
上海交通大学:
https://mirror.sjtu.edu.cn/
哈尔滨工业大学: 
http://mirrors.hit.edu.cn/#/home(目测哈工大的镜像同步的是最勤最新的)

1.5. 查看已经添加的channels

# 已添加的channel在哪里查看
conda config --get channels

windows 用户在C:\Users\~\下面
windows 用户无法直接创建 .condarc 文件,需要通过指令
conda config --set show_channel_urls yes
生成该文件,然后可以通过 vim/notepad++ 再修改

1.6. 恢复默认镜像源

conda config -remove-key channels

1.7. 卸载 conda

# 清理
rm -rf /opt/anaconda3
#删除 ~/.bash_profile中anaconda 的环境变量
vim ~/.bash_profile
#删除Anaconda的可能存在隐藏的文件:
rm -rf ~/.condarc ~/.conda ~/.continuum

经过以上步骤后,Anaconda 就被彻底删除了。

1.8. CondaHTTPError 问题

解决步骤;
https://blog.csdn.net/weixin_36670529/article/details/103838665
https://blog.csdn.net/duduhanna/article/details/121380007

2. 基础命令

在不同的项目中经常需要conda来配置环境,这样能够实现不同版本的python和库的随意切换,并且减少了很多不必要的麻烦。这里记录下conda常用的一些基础命令,以便后续查询。

2.1. 查询conda版本

conda -V
conda --version

2.2. 查询所有conda环境

# 需要加 -e 才能显示 conda名。
conda info -e
conda info --envs

2.3. 创建新的conda环境

# conda create --name [环境名] python=[python版本]
conda create --name conda_name python=3.7.16
conda create -n conda_name python=3.7.16

2.4. 进入相应conda环境

# conda activate [环境名]
conda activate conda_name

2.5. 退出当前conda环境

conda deactivate

2.6. 删除相应conda环境

删除环境时应先从该环境中退出

# conda remove -n [环境名] --all
conda remove -n conda_name --all

2.7. clone环境

(a).根据环境名clone新的环境

# conda create -n [新环境名称] --clone [现有环境名称]
conda create -n new_name --clone conda_name

(b).根据环境路径复制生成新的环境
若已有环境路径为C:\Python\Anaconda3\envs\huggingface,需要生成的新的环境名为B,如下例:

# conda create -n [新环境名称] --clone [现有环境地址]
conda create -n new_name --clone C:\Python\Anaconda3\envs\huggingface

生成的新的环境的位置在anaconda的安装路径下,如例中即在 C:\Python\Anaconda3\envs 位置

2.8. 检查列出环境包

conda list

2.9. 查找一个是否能够安装

# conda search search-term,可以模糊搜索。
conda search beautifulsoup4

2.10. conda环境中添加库

以安装tensorflow-gpu为例,操作与pip安装方式类似

conda install tensorflow-gpu==1.15.4

# conda install package-name。例如,要安装numpy包
conda install numpy
# 安装某个特定版本的numpy 
conda install numpy==1.10.
# Conda会自动安装该包所依赖的其他包。

2.11. 告知安装环境的名字并安装这个包

conda install --name base beautifulsoup

2.12. 更新包

conda update package-name。
# 要更新所有包使用conda update --all。

2.13. 移除安装的包,必须告知移除包的环境

conda remove -n base beautifulsoup4

2.14. 在conda环境内使用 pip安装

在 anaconda 下用 pip 装包的原因:尽管在anaconda 下我们可以很方便的使用 conda install 来安装我们需要的依赖,但是 anaconda 本身只提供部分包,远没有 pip 提供的包多,有时 conda 无法安装我们需要的包,我们需要用 pip 将其装到 conda 环境里。
首先进入指定的环境中,然后再通过 pip 安装即可,命令如下:

conda activate env_name  		# 进入环境conda install numpy=1.93
pip  install numpy==1.93conda deactivate  # 安装完之后记得退出环境

注!安装特定版本的包,conda用“=”,pip用“==”

3. 扩展

3.1. 使用终端自动进入上次使用 conda 环境

参考: https://blog.csdn.net/C_C666/article/details/129758579

在 .bashrc 写一个记忆脚本,记录上次启动的环境,并在开始时自动启动。

# 使用该命令启动 conda
function conda_set() {
    # 调用原始的 conda 命令
    conda activate "$@"

    # 覆盖式保存最新一次启动的conda环境名称到.condarc文件中
    rm -f ~/.last_conda_env
    echo "$(conda info --envs | grep '*' | awk '{print $1}')" >> ~/.last_conda_env
}

# 先检测有没有conda 环境名称。如果有则启动conda
if [ -f ~/.last_conda_env ]; then
    # 读取.condarc文件中保存的最后一次启动的conda环境名称
    last_conda_env=$(cat ~/.last_conda_env)

    # 激活最后一次启动的conda环境
    conda activate $last_conda_env
fi

配置生效

# 使配置生效
$ source  ~/.bashrc
# 首次使用 dify311 环境
$ conda_set dify311 

参考:
https://www.cnblogs.com/shealee/p/14349735.html
https://blog.csdn.net/aiaidexiaji/article/details/124365522

### 如何使用 conda-forge 渠道安装包 Conda 是一个开源的包管理器和环境管理系统,支持 Python 和 R 的多平台应用。`conda-forge` 是一个社区维护的渠道,提供了大量的软件包供用户下载和安装。通过 `conda-forge` 安装包可以简化依赖管理和版本控制的过程。 #### 使用 conda-forge 渠道的具体方法 要利用 `conda-forge` 来安装所需的包,可以通过以下方式实现: 1. **直接指定 `-c conda-forge` 参数** 在命令行中运行 `conda install` 命令时,可以直接附加参数 `-c conda-forge` 来指明从该渠道获取资源[^1]。例如: ```bash conda install pandas -c conda-forge ``` 2. **设置优先级更高的默认渠道** 如果希望长期使用 `conda-forge` 而无需每次都手动输入 `-c conda-forge`,可以在配置文件中调整渠道顺序。执行如下命令可将 `conda-forge` 设置为首选项之一: ```bash conda config --add channels conda-forge conda config --set channel_priority strict ``` 这样一来,在后续调用 `conda install` 时不需额外声明即可自动尝试从 `conda-forge` 下载所需组件[^2]。 3. **验证当前可用频道列表及其优先级设定** 可以随时查看已启用的所有源以及它们之间的相对重要程度: ```bash conda config --show-sources ``` 4. **实际案例展示多个常用库的安装过程** 以下是几个常见科学计算工具链借助于上述机制完成部署的例子: - Pandas 数据处理框架 ```bash conda install pandas -c conda-forge ``` - PyTables 文件存储解决方案 ```bash conda install pytables -c conda-forge ``` - Matplotlib 绘图引擎 ```bash conda install matplotlib -c conda-forge ``` - IPython 改良版交互式解释器 ```bash conda install ipython -c conda-forge ``` 对于某些特定场景下的需求,比如集成深度学习框架 PyTorch 到基于 R 的工作流里,则可能涉及更复杂的跨语言协作逻辑。此时除了常规手段外还需要结合其他插件辅助操作,像下面这样通过 reticulate 包间接触发 Conda 执行相应任务[^3]: ```R reticulate::py_install("pytorch") "C:/Users/hp/AppData/Local/r-miniconda/condabin/conda.bat" "install" "--yes" "--prefix" "C:/Users/hp/AppData/Local/r-miniconda/envs/r-reticulate" "-c" "conda-forge" "pytorch" ``` 以上即涵盖了基本概念介绍至具体实践指导全流程说明。 ```python import sys print(sys.version) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值