基于Wi-Fi的被动人体检测技术解析
在如今的室内环境监测领域,基于Wi-Fi的被动人体检测技术正逐渐崭露头角。它利用现有的Wi-Fi基础设施,无需用户携带额外设备,就能实现对人体的检测,具有广泛的应用前景。下面我们就来详细解析这一技术。
1. 数据基础与特征提取
利用现成的英特尔5300网卡和公开可用的驱动程序,一组在30个子载波上的信道频率响应(CFR)以信道状态信息(CSI)的形式提供给上层用户。信道响应能够展现无线链路更精细的时间和频谱结构,为后续的人体检测提供了丰富的数据基础。
在特征提取和分类方面,虽然基于指纹的室内定位和被动人体检测对特征签名的要求表面相似,但存在细微却根本的区别。室内定位要求所选签名在除服务用户外其他人存在时保持稳定,而被动人体检测的任务是区分靠近接收器和远处的用户。因此,提取的特征应满足两个要求:一是对附近人体存在敏感,二是对外部背景动态具有鲁棒性。
为了实现这一目标,我们采用CFR幅度直方图的K维向量作为物理层签名,并使用地球移动距离(EMD)作为签名分类的度量。
1.1 对人体存在的敏感性
当有入侵者存在时,部分传播路径会受到影响。在时域上,这表现为信道脉冲响应(CIR)的干扰;在频域上,体现为频率分集的变化,由CFR反映。
虽然CIR和CFR在建模信道响应上是等价的,但它们的幅度对人体存在的敏感性不同。通过实验收集数据发现,CIR的显著波动集中在第5个时间索引附近,而CFR的偏差则跨越整个子载波索引。这是因为时间上可分离的多径分量在频域中相互交织,即使只有一小部分路径受到影响,也会显著改变所有子载波上的CFR幅度。此外,从商业Wi-Fi基础设施中提取的CIR
基于Wi-Fi的被动人体检测技术解析
订阅专栏 解锁全文
28

被折叠的 条评论
为什么被折叠?



