python数据分析-Matplotlib_v2相关操作复习3-4

目录

3.load dataset

4.chart

3.load dataset

# read the dataset
data_BM = pd.read_csv("bigmart_data.csv")
#drop the null data
data_BM = data_BM.dropna(how = 'any')
# view the top results
#data_BM.head()

4.chart

4.1 Line chart

price_by_item = data_BM.groupby("Item_Type").Item_MRP.mean()[:10]

#将数据转化为列表
x = price_by_item.index.tolist()
y = price_by_item.index.tolist()

#set figure size
plt.figure(figsize = (14,8))

#set title
plt.title('Mean price for each item type')

#set axis label
plt.xlabel('Item Type')
plt.ylabel('Mean Type')

#set xticks
plt.xticks(np.arange(len(x)),x)
#plot 
plt.plot(x,y)
#out<<

在这里插入图片描述

4.2 bar chart

# sales by out size
sales_by_outlet_size = data_BM.groupby('Outlet_Size').Item_Outlet_Sales.mean()[:10]

#sort by sales
sales_by_outlet_size.sort_values(inplace = True)

x = sales_by_outlet_size.index.tolist()
y = sales_by_outlet_size.values.tolist()

#set labels
plt.xlabel('Outlet_Size')
plt.ylabel('Sales')

#set ticks
plt.xticks(np.arange(len(x)),x)

plt.bar(x,y,color = ['red','orange','magenta'])
#out<<

在这里插入图片描述

4.3 Historgam

#title
plt.title('Item MRP (price) distribution')

#xlabel
plt.xlabel('Item_MRP')

# ylabel
plt.ylabel('Frequency')

#plot historgram
plt.hist(data_BM['Item_MRP'],bins = 20,color = 'lightblue')
#out<<

在这里插入图片描述

4.4 box plot

data = data_BM['Item_Outlet_Sales']

#create outlier point shape
read_diamond = dict(markerfacecolor = 'r',maker = 'D')

#set title 
plt.title('Item Sales distribution')

#make the boxplot
plt.boxplot(data.values,labels = ['Item Sales'],flierprops = red_diamond);
#out<<

在这里插入图片描述

data = data_BM[['Item_Weight','Item_MRP']]

#create outlier point shape
red_diamond = dict(markerfacecolor = 'r',marker = 'D')

fig,ax = plt.subplots()

#make the boxplots
plt.bocplot(data.values,labels = ['Item Sales','Item MRP (price)'],flierprops = red_diamond);
#out<<

在这里插入图片描述

4.5 violin plots

data = data_BM[['Item_Weight','Item_MRP']]

#generate subplots
fig,ax = plt.subplots()

#add labels to x axis
plt.xticks([1,2],['Item_Weight','Item MRP'])

#make the violinplot
plt.violinplot(data.values);
#out<<

在这里插入图片描述

4.6 scatter plot

#set label of axes
plt.xlabel('Item_weight')
plt.ylabel('Item_visibility')

#plot
plt.scatter(data["Item_Weight"][:200],data_BM["Item_Visibility"][:200])
#out<<

在这里插入图片描述

4.7 bubble plot

# set label of axes 
plt.xlabel('Item_MRP')
plt.ylabel('Item_Outlet_Sales')

# set title
plt.title('Item Outlet Sales vs Item MRP (price)')

# plot
#注意与上图的区别
plt.scatter(data_BM["Item_MRP"][:100], data_BM["Item_Outlet_Sales"][:100], s=data_BM["Item_Visibility"][:100]*1000, c='red')
#out<<

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值