深入理解EMA和SMA

本文详细介绍了指数移动平均(EMA)和简单移动平均(SMA)的概念,通过Python代码展示了它们的计算过程。文章指出EMA对近期价格赋予更大权重,更敏感于市场变化,而SMA则允许自定义权重参数。同时提供了两种函数的实现,便于理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一直对EMA的理解都比较模糊,总是不能完全把握,因此,凡是牵涉到EMA的公式都搞不清其内在的数学模型是什么。刚好看到个文章,觉得写的很好。
参考内容:https://www.codeleading.com/article/9441142281/
后面有朋友提示写的函数错了,原因是针对原始的EMA公式的理解错误产生了偏差,然后上github上找到ema的c代码核对,发现先前的应该是理解错了,N是一个固定值,中间不应变化,具体C代码可参考:

https://github.com/TA-Lib/ta-lib/blob/master/src/ta_func/ta_EMA.c

这个c代码看起来有点复杂,也没完全看,又在网上看到了一个朋友的表达

https://www.joinquant.com/view/community/detail/3d88c84f05e5a3bd72f728a40e54edf4
说talib实现的经典的EMA功能的应该是采用将第N个值的EMA求值即采用简单的取平均值的方式。

1 EMA

公式:EMAtoday=α * Pricetoday + ( 1 - α ) * EMAyesterday;
其中,α为平滑指数,一般取作2/(N+1)
推导公式:EMA(X,N)=[2X+(N-1)Y’]/(N+1)
按tablib.EMA的处理方式,前N个EMA值皆为NAN,第N个EMA值为sum(c[:N]/N)
因此代码可以整理为:

import numpy as np
from typing import List


def EMA(arr: List[any], N: int) -> List[any]:
    if len(arr) < N:
        return [np.NAN] * len(arr)
    out = [np.NAN] * (N - 1)
    out.append(sum(arr[:N]) / N)
    for i in range(N, len(arr)):
        e = (2 * arr[i] + (N - 1) * out[-1]) / (N + 1)
        out.append(e)
    return out


if __name__ == '__main__':
    c = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
    print(EMA(c, 5))

在EMA指标中,每天价格的权重系数以指数等比形式缩小。时间越靠近当今时刻,它的权重越大,说明EMA函数对近期的价格加强了权重比,更能及时反映近期价格波动情况。所以EMA比MA更具参考价值,而EMA也不容易出现死叉和金叉,所以一旦出现要立即作出反映!对周线处理,EMA就更加稳定了。

2 SMA

理解了EMA的含义和用途后,后面SMA函数就好理解了;因为EMA的平滑系数是定的,=2/(周期+1);如果要改变平滑系数咋办?这就用到了 SMA,与EMA的区别就是增加了权重参数M,也就是用M代替EMA平滑系数中的2,这样我们可以根据需要调整当日数值在均价中的权重=M/N。(要求N>M)
推导公式:SMA(X,N,M)=[MX+(N+1-M)Y’]/(N+1)

代码:

import numpy as np
from typing import List


def SMA(arr: List[any], N: int, M: int) -> List[any]:
    if len(arr) < N:
        return [np.NAN] * len(arr)
    out = [np.NAN] * (N - 1)
    out.append(sum(arr[:N]) / N)
    for i in range(N, len(arr)):
        e = (M * arr[i] + (N + 1 - M) * out[-1]) / (N + 1)
        out.append(e)
    return out


if __name__ == '__main__':
    c = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
    print(SMA(c, 5, 3))
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

永远的麦田

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值