产品经理进行用户分层 常见的4大方法

        用户分层对产品开发非常重要,通过对用户进行分层,我们可以更好地理解不同用户群体的需求、行为和偏好,从而更精准定位和设计产品,有利于提高市场竞争力。

        如果不进行用户分层可能导致产品经理不了解用户需求,无法提供个性化产品和满足用户体验,难以准确定位产品和应对市场竞争,不利于产品价值的实现。

        而常见的用户分层主要有以下4种方法:

        一、用户价值区隔分层

        用户价值区隔分层是指通过产品的某一个维度判断用户贡献的价值高低。常见两种分层方式:基于用户生命周期进行区隔和基于关键用户行为进行区隔。

        1、用户生命周期模型

        用户生命周期定义必然与用户价值成长路径有关,不同类型产品有不同的价值成长路径。按照产品是否付费及产品的使用频率,可以将不同产品的价值成长路径划分为四个象限:

不同该产品价值成长路径四象限
不同该产品价值成长路径四象限

        一般用户的生命周期分为5个阶段:

        导入期:用户刚注册,尚未体验核心功能流程,对产品所带来的价值不熟悉;

        成长期:已体验核心功能流程,对产品提供的价值较为认可,建立初步使用习惯;

        成熟期:对产品形成高度使用习惯和依赖,使用频率和时长明显高,能够贡献较高的价值;

        休眠期:曾经是成熟用户,但现在不再访问和使用产品或访问频次越来越低。如超过10天未使用。

        流失期:已经长时间不登录产品,甚至已卸载产品。如超过30天未使用的用户。

用户生命周期
用户生命周期

        2、RFM方法

        RFM方法是较为典型和常用,根据用户关键行为进行用户价值区隔分层的方法。RFM分别代表用户三种关键行为:

        R(Recency):距离最近一次交易

        F(Frequency):交易频次

        M(Monetary):交易金额

        通过RFM方法可以将用户分成8大类型:

RFM方法
RFM方法

​        RFM方法的核心逻辑是找出影响用户价值高低的关键行为,然后进行交叉分析和用户划分。

        二、用户需求区隔分层

        用户需求区隔分层,主要分为两个维度:用户自然属性和用户个性化需求。

        用户自然属性:主要依赖用户的基础数据,包括性别,年龄,职业,收入等;

        用户个性化需求:主要依赖用户的行为数据,个人消费偏好,个人场景偏好。

        用户需求区隔分层,主要就是通过分析用户是否在这两个维度上,用户的需求有明显的差异,判断的方法:经验洞察和数据说话。在具体操作时,我们可以使用单个维度进行区分,也可以使用两个维度进行交叉分析。

用户需求区隔分层
用户需求区隔分层

        为了进一步提高需求分析效率和质量,我们可以使用开发工具,快速提高需求分析效率。如CoCode开发云使用GPT技术,通过需求条目化和自动分解子需求功能,将用户需求一键自动生成标准用户故事需求分析工具使用AI通过需求测试和一致性检测,能够在几分钟内快速分析用户需求缺陷,如歧义、重复、遗漏、不一致和复杂性等问题,精准锁定需求问题,从而更高效地修改需求缺陷,提高用户需求分析质量。

CoCode需求条目化 自动生成标准用户故事
CoCode需求条目化 自动生成标准用户故事

​        三、AARRR模型分层

        AARRR模型分层不仅可以用来做增长,也可以用来做用户分层。其包括5个环节:

        用户获取(Acquisition): 用户从不同渠道注册产品,需要关注不同渠道的注册转化率,优化渠道资源投放。

        提高活跃度(Activation):用户已注册,但未完成产品核心流程体验,此阶段需加强引导用户完成核心流程。

        提高留存率(Retention):体验了核心流程,但留存时长不高,针对此留存问题进行分析,给出具体运营策略。

        病毒式传播(Referral):活跃频次超过一定范围的用户,我们可以通过工具进行优化,刺激用户进行传播。

        获得收益(Revenue):活跃度和留存时长超过一定范围的用户,我们可以针对特定用户,结合特定的场景,对其加强付费引导。

AARRR模型分层
AARRR模型分层

​        AARRR模型分层适用于产品比较初级的阶段,此阶段用户量一般,公司数据体系尚未搭建起来。

        四、用户身份区隔分层

        一般在内容社区,以用户身份将用户分为KOL和普通用户,针对这两种用户运营策略肯定不同。而在产品所在领域,当用户的行为特征和诉求差异较大时,使用身份区隔的方式进行分层比较合适。如微博将用户分为:明星用户,KOL用户,活跃用户和普通用户。

        如果用户之间不存在关系,那么就不适用此模型;如果存在干系,因为贡献内容或稀缺性产生用户阶层,那么就可以根据贡献度和稀缺性来搭建用户分层模型;如果不同阶段的用户可以自然进阶,那么就根据进阶的阶层搭建用户分层模型。

用户身份区隔分层
用户身份区隔分层

​        我们进行用户分层的目的是为了用户精细化运营,以实现以最小运营成本实现产品收益的最大化。其核心是:不同层级用户可以用明确的数据标签,属性标签定义出来,从而实现用户标签自动化;而不同层级的用户运营策略是哟针对性且稳定的。

<think>好的,我现在需要帮用户介绍AI产品经理知识库。首先,我得理解用户需求。他们可能想了解AI产品经理需要掌握哪些知识,或者如何构建相关知识库。用户可能是想转行进入这个领域,或者已经是产品经理但想专攻AI方向。 接下来,我应该明确AI产品经理的职责。通常,他们需要结合AI技术和产品管理,所以知识库应该涵盖技术基础、产品管理方法和行业应用等方面。需要分模块来组织内容,比如技术基础、产品设计、数据管理、伦理法规等。 然后,考虑用户可能不太清楚AI产品经理和传统产品经理的区别,所以需要强调AI相关的独特技能,比如机器学习模型的理解、数据预处理、算法评估等。同时,还要提到工具和框架,比如TensorFlow、PyTorch,这些是实际工作中会用到的。 另外,伦理和合规性也是重点,特别是在数据隐私和算法偏见方面。用户可能需要了解如何处理这些问题,避免产品中的风险。 案例分析和实践资源对用户来说也很重要,他们可能希望看到实际应用,比如推荐系统或NLP产品的设计流程。提供书籍、在线课程和社区资源可以帮助他们进一步学习。 最后,要确保回答结构清晰,分点说明,让用户逐步理解。同时,注意使用正确的中文表达,避免技术术语过于晦涩,保持易懂。可能需要检查是否有遗漏的部分,比如项目管理或跨部门协作,这些也是产品经理的关键技能。 总结下来,我需要组织一个涵盖技术、产品、数据、伦理、工具、案例和学习资源的框架,每个部分简明扼要,帮助用户全面了解AI产品经理所需的知识体系。</think>以下是关于AI产品经理知识库的系统性介绍,按核心模块分层解析: $$ \text{AI产品经理知识库} = \text{技术基础} \oplus \text{产品思维} \oplus \text{行业认知} \oplus \text{工具链} \oplus \text{伦理规范} $$ --- ### 一、技术基础模块 1. **机器学习基础** - 掌握监督/非监督学习基本概念:$y = f(x;\theta)$ 的建模思想 - 理解常见算法原理:如决策树$Gini(D) = 1 - \sum_{k=1}^K p_k^2$,神经网络梯度下降$\theta_{t+1} = \theta_t - \eta \nabla_\theta J(\theta)$ 2. **工程能力** - 模型部署流程:特征工程$\rightarrow$训练$\rightarrow$评估(准确率$Acc=\frac{TP+TN}{TP+TN+FP+FN}$)$\rightarrow$AB测试 --- ### 二、产品设计维度 1. **需求分析框架** $$ \text{AI可行性} = \begin{cases} \text{数据可获得性} \\ \text{算法成熟度} \\ \text{ROI经济性} \end{cases} $$ 2. **用户体验设计** - 处理算法不确定性:设计fallback机制(如置信度<0.7时转人工) --- ### 三、数据管理体系 1. **数据生命周期** ```mermaid graph LR A[数据采集] --> B[清洗标注] B --> C[特征存储] C --> D[版本控制] ``` 2. **评估指标体系** | 指标类型 | 计算公式 | |---|---| | 业务指标 | $GMV = \sum 订单价 \times 数量$ | | 算法指标 | $F1 = \frac{2 \times P \times R}{P + R}$ | --- ### 四、伦理与合规 1. **风险防控点** - 数据隐私:满足GDPR要求,差分隐私技术$\epsilon \text{-DP}$ - 算法公平性:消除特征$X_i$与敏感属性$S$的相关性$Corr(X_i,S)$ --- ### 五、工具链图谱 ```python # 典型技术栈示例 AI框架 = ["TensorFlow", "PyTorch"] 数据工具 = ["Spark", "Flink"] 部署平台 = ["AWS SageMaker", "Kubernetes"] ``` --- ### 六、学习路径建议 1. **知识获取渠道** - 理论:《机器学习实战》《AI产品经理方法论》 - 实践:Kaggle竞赛、开放API调试(如Azure Cognitive Services) 2. **能力演进路线** $$ \text{初级} \xrightarrow{\text{3个项目经验}} \text{资深} \xrightarrow{\text{跨领域整合}} \text{专家} $$ --- 通过系统构建上述知识模块,AI产品经理可有效衔接技术团队与商业需求,推动智能产品落地。建议定期更新知识库,重点关注模型、AutoML等前沿方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值