产品经理学习-用户运营和用户分层模型

  1. 目录
  2. 什么是用户运营
  3. 用户运营三大工作体系
  4. 用户分层模型-AARRR介绍

什么是用户运营

定义:用户运营就是搭建用户运营体系,围绕用户来做一系列的产品运营机制,提升太湖的活跃和留存,最终让用户进行付费。

例如小红书就是建立了用户运营机制,根据太湖不同的喜好进行精准内容推荐,明星推荐等手段刺激用户的欲望,最后让用户付费。

用户运营是为用户服务,用户运营需要传递产品核心价值给用户,从而用户可以通过产品得到他们想要的东西,为了更好的服务用户,用户运营也要为产品服务,给产品提供优化迭代的需求,从而产品可以赋能用户运营

用户运营工作流程

用户运营工作是测试——优化不断的循环,从不断的测试中提升运营的效果。

运营方法有哪些?

简单来说:活动、精准推荐、积分奖励等都是运营方法

业务逻辑分析

为什么要分析业务?如果不懂业务,懂得运营方法有哪些也不能精准的使用运营手段来实现目标。

先了解企业是靠什么盈利的,比如网易云音乐:

收入来自会员付费+商城+广告

会员付费:                

网易云业务逻辑:

如上图:网易云的业务逻辑中平台给消费费用户提供平台音乐资源,消费用户从平台获取资源进行消费,平台给创作用户提供报酬,和成长平台;创作用户产出优质内容消费用户对这部分内容进行评论点赞,反过来创作用户UGC作品的质量反馈也会展示给消费用户。

用户运营三大工作体系

  1. 用户分层体系
  2. 用户生命周期体系
  3. 用户成长体系

用户分层体系

按照不同用户的价值、用户角色、喜欢等进行划分,通过定义用户角色针对不同用户做不同的运营策略。

用户从第一次接触产品到最后放弃使用产品的时间周期,通过用户生命周期体系,延长用户的生命周期,让用户在产品使用期间贡献更大的价值。

用户成长体系

搭建用户激励通道,设置成长奖励驱动用户成长

做用户分层就是为了针对不同的用户做不同的运营策略

用户分层模型AARRR介绍

Acquisition 获取用户

获取用户,我们怎么触达用

Activation 提高激活

提供活跃度,给用户带来更好的体验

Retention 提高留存

提高留存率,让用户持续使用

Revenue提升收入

获取收入、创造更多价值

Refer 自传播

如何让用户自发传播给别人

小红书如何获取用户:

  1. 应用商店

APPstore 、应用宝、华为应用市场

  1. 营销事件

策划利用具有新闻价值、社会影响以及名人效应的人或事物。来提升产品的知名度和品牌形象

  1. 异业合作

2个或2个以上不同的行业进行合作,实现双赢

  1. 站内相互导流

同一个公司不同产品相互导流(支付宝给饿了么引进用户)

  1. 老带新

通过老用户传播带来新用户

  1. 新媒体

通过新每天的渠道获取客户

如何激活用户

  1. 促销(新用户专享、优惠券、限时促销、秒杀)

促销活动,以优惠的价格吸引用户

  1. 活动(主题活动)

以主题或专题的形式专门吸引某一类用户

  1. 签到

坚持签到获取奖励

  1. 新手任务

通过新手任务让用户快速了解并使用产品

  1. 精准推荐

针对不同的用户做精准的产品推荐

  1. 消息推送

主动将最新的消息推送给用户,让用户通过消息推送使用产品

用户留存的方法:

  1. 活动(促销、主题、节假日等)

促销活动、以优惠的价格吸引用户

  1. 日常任务

以奖励吸引用户每天打开并使用产品

  1. 持续内容更新

以优质的内容吸引用户

  1. 用户互动

增加社交感、增加用户粘性

  1. 个性化需求

满足不同用户的个性化需求,让用户觉得产品人性化

  1. 消息推送

通过消息推送、刺激用户打开产品

  1. 会员体系

通过会员体系,提升用户粘性产生复购

  1. 积分兑换

通过积分兑换,鼓励用户不断使用产品

提升收入

  1. 定时发送优惠券

针对某一指定的产品做优惠活动

  1. 满减

让用户凑单满减

  1. 提高客单价

向用户推荐客单价更高的产品

  1. 增值服务

通过购买产品获得额外的服务或优惠(超级会员)

  1. 捆绑销售

相关产品搭配销售

  1. 促销活动

通过促销活动提升用户购买频次

  1. 相关产品推荐

用户卖完一个产品后推荐相关产品刺激用户购买

用户传播

  1. 传播奖励

邀请一位新用户可活动相应的经理

  1. 炫耀式传播

超过多少用户,排行榜展示

  1. 诱导传播

以利益驱动促进用户转发

  1. 优质内容

以内容的质量引起用户共鸣从而传播

  1. 分销

推荐别人购买,自己获得利润

总结:AARRR模型适用于C端产品,根据产品的灵活运用,不一定要按顺序进行

<think>好的,用户现在想了解电商中用户分层的方法实现技术。首先我需要确定用户的具体需求是什么。用户可能是在做相关项目或者研究,需要了解具体的技术手段实施步骤。根据用户提供的引用内容,特别是引用[1]提到用户分层与细分策略通过数据分析来提升营销效率,所以数据分析是关键部分。 接下来,我需要整理用户分层常用的方法。常见的有基于RFM模型用户生命周期、行为标签、聚类分析等。这些方法在电商中应用广泛,需要详细解释每种方法及其技术实现。 然后,技术实现方面,用户可能想知道具体的技术架构。引用[3]提到了共享数据库、独立数据库微服务模式,其中微服务模式适合用户分层这种需要灵活处理的场景。因此,需要结合这些技术架构来说明如何支撑用户分层的实现。 另外,用户可能对具体的实现步骤感兴趣,比如数据采集、处理、建模、应用等环节。这里需要提到使用的技术工具,比如Python的数据分析库(Pandas、Scikit-learn)、大数据框架(Hadoop、Spark)、数据库(MySQL、Redis)以及可视化工具(Tableau、Power BI)。引用[2]提到了FlaskPython的应用,可能可以结合这些技术举例说明如何实现分层系统。 还需要考虑用户分层的实际应用,比如个性化推荐、精准营销等,并结合引用[1]中的内容,说明如何通过分层提升转化率用户体验。同时,生成相关问题时要覆盖用户分层模型、技术挑战、实时处理、与推荐系统的结合以及评估方法,这样用户可以有更深入的方向去探索。 最后,要确保回答结构清晰,技术细节准确,并且引用相关的参考文献,如引用[1]、[3]来支持内容。同时,检查是否符合之前的格式要求,比如行内公式使用$...$,独立公式用$$...$$,但当前问题可能不涉及数学公式,所以可能不需要添加。不过如果有涉及统计模型或算法,可能需要适当加入,比如聚类分析的数学表达。 总结来说,回答需要分方法、技术实现、应用场景三个部分,结合用户提供的引用,给出具体的例子技术工具,确保用户能够理解并应用这些方法。</think>### 电商用户分层方法与实现技术 #### 一、用户分层的核心方法 1. **基于RFM模型的分类** - **R(Recency)**:最近一次消费时间,反映用户活跃度 - **F(Frequency)**:消费频率,衡量用户忠诚度 - **M(Monetary)**:消费金额,体现用户价值 通过公式对用户分组: $$ Score = w_1 \cdot R + w_2 \cdot F + w_3 \cdot M $$ 权重$w_1,w_2,w_3$需根据业务目标调整[^1]。 2. **用户生命周期分层** 将用户划分为:新用户、成长期用户、成熟期用户、衰退期用户、流失用户。通过**马尔可夫链模型**预测用户状态转移概率。 3. **行为标签分层** 使用**协同过滤算法**或**决策树模型**对用户行为(如浏览、收藏、加购)打标签,例如: - 价格敏感型 - 品牌忠诚型 - 冲动消费型 4. **聚类分析分层** 采用**K-means算法**或**层次聚类(Hierarchical Clustering)**,基于多维数据(如购买频次、客单价、品类偏好)划分用户群。距离计算常用欧氏距离: $$ d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} $$ #### 二、技术实现路径 1. **技术架构选择** - **微服务模式**(推荐):通过独立用户画像服务实现动态分层,引用[3]指出该模式支持高并发灵活扩展 - 数据存储采用混合方案: - 实时行为数据 → Kafka + Flink - 用户标签 → Redis + Elasticsearch - 历史数据 → Hadoop HDFS 2. **关键实现步骤** ```python # 示例:基于Scikit-learn的RFM分层 from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans # 数据标准化 scaler = StandardScaler() rfm_scaled = scaler.fit_transform(rfm_data) # K-means聚类 kmeans = KMeans(n_clusters=5) clusters = kmeans.fit_predict(rfm_scaled) ``` 3. **工具链组合** | 环节 | 技术栈 | |------------|-------------------------| | 数据采集 | Flume/Logstash +埋点SDK | | 数据处理 | Spark SQL + Pandas | | 模型训练 | Python MLlib/TensorFlow | | 可视化 | Superset + Grafana | #### 三、典型应用场景 1. **精准营销** 对高价值用户推送VIP专属优惠,引用[1]中提到的"个性化用户体验"可通过分层实现转化率提升20%-35%[^1]。 2. **动态定价策略** 根据用户价格敏感度分层,采用强化学习算法调整折扣力度: $$ Q(s,a) = Q(s,a) + \alpha [r + \gamma \max_{a'}Q(s',a') - Q(s,a)] $$ 3. **库存预警系统** 针对不同地区/用户群体的消费特征,通过LSTM模型预测需求: $$ h_t = \sigma(W_{xh}x_t + W_{hh}h_{t-1} + b_h) $$ ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值