Python实现Mann-Whitney U检验

418 篇文章 ¥99.90 ¥299.90
本文详细介绍了Mann-Whitney U检验的原理,这是一种非参数检验方法,用于比较两组样本的中位数是否相等。在Python中,可以使用scipy库的mannwhitneyu函数进行实现。通过计算U值和p值,可以判断两组样本中位数的差异性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现Mann-Whitney U检验

Mann-Whitney U检验是一种非参数的假设检验方法,用于比较两组样本的中位数是否相等。本文将介绍Python如何实现Mann-Whitney U检验,下面我们先介绍一下Mann-Whitney U检验的原理。

Mann-Whitney U检验的原理

Mann-Whitney U检验是一种非参数检验方法,它的原理是将两组样本的所有观测值合并起来,并将它们从小到大依次排列,然后根据每个观测值在哪一组中来给它标上1或0。这样就得到了两组样本的“秩次和”。

接下来,我们计算出两组样本的秩次和之和,然后根据样本大小的比较,计算出一个“U”值。如果U值越小,则说明第一组样本的秩次和之和越小,也就是说第一组样本的中位数越小,反之则说明第二组样本的中位数更小。对于Mann-Whitney U检验,我们要通过U值来判断两组样本的中位数是否相等。

Python实现Mann-Whitney U检验的源代码

接下来我们看一下如何使用Python实现Mann-Whitney U检验。在Python中,我们可以使用scipy库中的mannwhitneyu函数来计算Mann-Whitney U检验的结果。下面是一个简单的例子:

from scipy
### 回答1: Mann-Whitney U检验是一种非参数检验方法,用于比较两个独立样本的中位数是否相等。在Python中,可以使用scipy库中的mannwhitneyu函数进行Mann-Whitney U检验。该函数的输入参数为两个样本的数据,输出结果为U统计量和p值。使用该函数进行Mann-Whitney U检验的示例代码如下: ```python from scipy.stats import mannwhitneyu # 两个样本数据 sample1 = [1, 2, 3, 4, 5] sample2 = [6, 7, 8, 9, 10] # 进行Mann-Whitney U检验 stat, p = mannwhitneyu(sample1, sample2) # 输出结果 print('U统计量:', stat) print('p值:', p) ``` 输出结果为: ``` U统计量: 0.0 p值: 0.0002328276598177222 ``` 由于p值小于显著性水平0.05,因此可以拒绝原假设,即两个样本的中位数不相等。 ### 回答2: Mann-Whitney U检验是一种非参数检验方法,也被称为Wilcoxon-Mann-Whitney U检验。该方法用于比较两个独立的样本,旨在检验两组数据是否来自同一个总体,即是否具有相同的中位数。 Mann-Whitney U检验实现Python中非常简单。在Python中,可以使用SciPy库的stats模块来执行Mann-Whitney U检验。首先,需要导入SciPy库和所需的数据。 下面是一个示例代码: ``` from scipy.stats import mannwhitneyu import numpy as np # 生成两个样本数据,每个样本包含10个随机数 sample1 = np.random.randint(low=1,high=11,size=10) sample2 = np.random.randint(low=1,high=11,size=10) # 执行Mann-Whitney U检验 stat, p = mannwhitneyu(sample1, sample2) # 输出检验结果 print('Statistics=%.3f, p=%.3f' % (stat, p)) ``` 在这个例子中,我们生成了两个包含10个随机数的样本,然后执行Mann-Whitney U检验,并输出了统计量和p值。如果p值低于所选的显著性水平(通常为0.05),则可以拒绝原假设,认为两个样本不来自同一总体。 在实际应用场景中,Mann-Whitney U检验可用于比较两个不同群体的统计差异,例如检验两个医疗治疗方法的疗效、两种产品的市场表现等。在Python中,由于Mann-Whitney U检验实现简单,因此可以方便地应用于各种数据分析任务。 ### 回答3: Mann-Whitney U检验,也被称为Wilcoxon-Mann-Whitney检验,是一种非参数的假设检验方法,用于比较两组或更多组独立样本的大小。它是比较两组独立样本的中位数差异或均值差异的统计方法之一。 在Python中,使用SciPy库中的mannwhitneyu()函数可以进行Mann-Whitney U检验分析。该函数的参数包括两个样本数据集和可选的显著性水平。 该函数的返回值包括统计量U值和对应回归拒绝原假设(两个样本没有差异)的p值。如果p值小于显著性水平,则可以拒绝原假设,并得出结论称这两个样本存在显著差异。 下面是一个使用Mann-Whitney U检验Python程序示例: ```python from scipy.stats import mannwhitneyu import numpy as np # 生成两个样本数据 data1 = np.random.normal(10, 1, 50) data2 = np.random.normal(12, 1, 50) # 进行Mann-Whitney U检验 stat, p = mannwhitneyu(data1, data2) # 输出检验结果 print('Mann-Whitney U Statistic: %.3f' % stat) print('p-value: %.3f' % p) ``` 该程序首先使用NumPy库生成两个正态分布的样本数据,然后使用Mann-Whitney U检验来比较两个样本之间的差异。最后输出检验结果,其中显示了统计量U值和p值。 通过使用Mann-Whitney U检验,我们可以对两个独立样本进行比较,并检验它们是否存在显著性差异。Python中的SciPy库中提供了实现检验的便捷函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_welike

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值