多元回归分析:使用CNN-BiLSTM网络进行多输入单输出预测(Matlab实现)
在这篇文章中,我们将介绍如何使用CNN-BiLSTM(卷积双向长短期记忆神经网络)进行多元回归分析,并实现多输入单输出的预测。我们将使用Matlab编程语言来实现这个任务,并提供相应的源代码。
首先,让我们了解一下所使用的神经网络模型。CNN-BiLSTM是一种混合型神经网络,结合了卷积神经网络(CNN)和双向长短期记忆(BiLSTM)网络的特性。CNN适用于提取输入数据中的空间特征,而BiLSTM则可以捕捉输入序列中的时序依赖关系。通过将它们结合在一起,我们可以利用CNN的并行计算能力和BiLSTM的时序建模能力来处理多输入数据并进行预测任务。
现在,让我们开始编写代码来实现这个多元回归分析的任务。我们将按照以下步骤进行:
步骤 1:导入数据
首先,我们需要导入用于训练和测试的数据。假设我们有多个输入特征和一个输出值。可以使用Matlab的文件读取功能来加载数据集。
% 导入数据
input_data =