数学表达式の学习笔记

1 基础格式

  不加粗斜体, A A A

  一个公式既有斜体又有正体,注意{}的范围,如{\rm Hom}(U,V) H o m ( U , V ) {\rm Hom}(U,V) Hom(U,V)

  删除,用sout或cancel,得到 a , a \sout a, \cancel a a,a

  不加粗正体,\rm{A} → A \to\rm{A} A。rm:roman。(这里的 → \to 只表示得到的意思,此处不表示集合映射到集合)

  加粗斜体,\boldsymbol{A} → A \to\boldsymbol{A} A,\bm{A} → A \to\bm{A} A
其中,bm:Access bold symbols in maths mode. \bm{·} is rather more careful in the way it does things than \boldsymbol{·}.

≡ ≈ = d e f = \equiv \approx \overset{\mathrm{def}}{=} \xlongequal{\quad\quad} =def

  \mathbf{A} → A \to\mathbf{A} A。bf:boldface。
PS:对于矩阵,个人更推荐 \bm{·}的 A \bm{A} A,而不是\mathbf{·}的 A \mathbf{A} A。如果是纯粹的数学中,集合则是最普通的不加粗斜体 A A A


本文的格式本文统一,但不代表最终推荐。

如果集合在后文中都会以某种矩阵方式出现,那么集合以大写正体加粗表示是合理的(但依然可以斜体加粗),如果集合以向量在后文出现,那么以小写黑体加粗是合理的,如果后文中依然是最纯粹的集合建议大写斜体不加粗

  \dots → … \to\dots      a \空格 b → a   b \to a\ b a b     \langle\rangle → ⟨ ⟩ \to\langle\rangle      \pm → ± \to\pm ±,即plus minus

  \mathbb{R} → R \to\mathbb{R} R,双线字体(也称空体字母)通常用于表示数域(对加减乘除封闭的数集)。如有理数集 Q \mathbb{Q} Q,实数集 R \mathbb{R} R,复数集 C \mathbb{C} C,整数不是数域,但因为使用频率很高,也记作 Z \mathbb{Z} Z,同理自然数集 N \mathbb{N} N。bb,blackboard bold。

  \mathcal{R} → R \to\mathcal{R} R,花写体(通常个也称手写体、花体,尽管实际上存在差异)是集合论中表示集族的专属,如集合 A A A的幂集是集族,记作 A = 2 A \mathcal{A}=2^{\mathbf{A}} A=2A。cal,calligraphy。

   X = { x i } i = 1 n = { x 1 , x 2 , … , x n } \mathbf{X} = \{x_i\}_{i = 1}^n = \{x_1, x_2, \dots, x_n\} X={ xi}i=1n={ x1,x2,,xn}.

  \emptyset → ∅ \to\emptyset        \underline{\mathbf{A}} → A ‾ \to\underline{\mathbf{A}} A

  \overline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X} → X ‾ = U ∖ X \to\overline{\mathbf{X}} = \mathbf{U} \setminus \mathbf{X} X=UX.

  \bigcup_{i = 1}^n \mathbf{X}_i → ⋃ i = 1 n X i \to\bigcup_{i = 1}^n \mathbf{X}_i i=1nXi.

   \sum_{i = 1}^n i = 1 + 2 + \dots + n = \frac{n (n + 1)}{2} → ∑ i = 1 n i = 1 + 2 + ⋯ + n = n ( n + 1 ) 2 \to \sum_{i = 1}^n i = 1 + 2 + \dots + n = \frac{n (n + 1)}{2} i=1ni=1+2++n=2n(n+1).

   B ⊆ A \mathbf B\subseteq \mathbf A BA B ∈ 2 A \mathbf B \in 2^{\mathbf{A}} B2A 等价。

  \mathbf{A} \times \mathbf{B} \ne \mathbf{B} \times \mathbf{A} → A × B ≠ B × A \to \mathbf{A} \times \mathbf{B} \ne \mathbf{B} \times \mathbf{A} A×B=B×A.

f : R → R ,        x ↦ x 2 + 1 f:\mathbb{R} \to \mathbb{R}, \\ \ \ \ \ \ \ x \mapsto x^2 + 1 f:RR,      xx2+1.

练习:

1 A = { 3 , 5 } \mathbf{A}=\{3,5\} A={ 3,5},写出 2 A 2^{\mathbf{A}} 2A 2 A = { ∅ , { 3 } , { 5 } , { 3 , 5 } } 2^{\mathbf{A}} = \{\emptyset,\{3\},\{5\},\{3,5\}\} 2A={ ,{ 3},{ 5},{ 3,5}}

2 展开 2 ∅ 2^{\emptyset} 2 2 ∅ = { ∅ } 2^{\emptyset}=\{\emptyset\} 2={ }

3 令 A = { 5 , 6 , 7 , 8 , 9 } \mathbf{A} = \{5, 6, 7, 8, 9\} A={ 5,6,7,8,9},写出 A \mathbf{A} A的其它两种表示法: A = { 5 , 6 , … , 9 } = { x ∈ N   ∣   5 ≤ x ≤ 9 } \mathbf{A} = \{5, 6, \dots, 9\}= \{x\in\mathbb{N}\ \vert\ 5\leq x\leq9\} A={ 5,6,,9}={ xN  5x9}

4 矩阵乘法
[ 3 1 4 2 0 5 ] × [ 3 2 5 1 1 3 0 2 ] = [ 10 9 15 5 14 14 20 8 5 15 0 10 ] \left[ \begin{array} {lr} %lr表示第一列left左对齐,第二列right右对齐,若没写则后面的列center居中c对齐 3 & 1 \\ 4 & 2 \\ 0 & 5 \end{array} \right] \times \left[\begin{array}{lcr} 3 & 2 & 5 & 1 \\ 1 & 3 & 0 & 2 \end{array}\right] = \left[\begin{array}{lcr}10 & 9 & 15 & 5 \\ 14 & 14 & 20 & 8 \\ 5 & 15 & 0 & 10\end{array}\right] 340125×[31235012]=1014591415152005810

5 各种矩阵
  pmatrix 圆括号矩阵; bmatrix 方括号矩阵; Bmatrix 花括号矩阵;
  matrix 无括号矩阵排列; vmatrix 行列式; Vmatrix 范数:

\begin{
   pmatrix}  0 & -i \\ i & 0  \end{
   pmatrix}
\begin{
   bmatrix} 0 & -1 \\ 1 & 0 \end{
   bmatrix}
\begin{
   Bmatrix} 1 & 0 \\ 0 & -1 \end{
   Bmatrix}
\begin{
   matrix} 0 & 1 \\ 1 & 0 \end{
   matrix}
\begin{
   vmatrix} a & b \\ c & d \end{
   vmatrix}
\begin{
   Vmatrix} i & 0 \\ 0 & -i \end{
   Vmatrix}

( 0 − i i 0 ) [ 0 − 1 1 0 ] { 1 0 0 − 1 }   0 1 1 0   ∣ a b c d ∣ ∥ i 0 0 − i ∥ \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \ \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} (0ii0)[0110]{ 1001} 0110 acbdi00i

2 二元关系

  (一个从集合 A \mathbf{A} A到集合 B \mathbf{B} B的)二元关系的本质是一种集合,它是 A × B \mathbf{A}\times \mathbf{B} A×B 的子集。因此 a 、 b a、b ab满足某种关系,实质为元素 ( a , b ) (a,b) (a,b)属于这个关系的集合,即 ( a , b ) ∈ R (a,b)\in\mathbf{R} (a,b)R。举例:

  1. 包含关系
    A = { ∅ , { 1 } } \mathbf{A}=\{\emptyset,\{1\}\} A={ ,{ 1}} B = { { 1 } , { 2 } , { 1 , 2 } } \mathbf{B}=\{\{1\},\{2\},\{1,2\}\} B={ { 1},{ 2},{ 1,2}}
    从集合 A \mathbf{A} A到集合 B \mathbf{B} B ⊆ \subseteq 关系集合是
    { ( ∅ , { 1 } ) , ( ∅ , { 2 } ) , ( ∅ , { 1 , 2 } ) , ( { 1 } , { 1 } ) } , ( { 1 } , { 1 , 2 } ) } \{(\emptyset,\{1\}) , (\emptyset,\{2\}) , (\emptyset,\{1,2\}) ,(\{1\},\{1\}) \} ,(\{1\},\{1,2\}) \} { (,{ 1}),(,{ 2}),(,{ 1,2}),({ 1},{ 1})},({ 1},{ 1,2})}
  2. 属于关系
    A = { 0 , 1 } \mathbf{A}=\{0, 1\} A={ 0,1} B = { { 1 } , { 2 } , { 1 , 2 } } \mathbf{B}=\{\{1\},\{2\},\{1,2\}\} B={ { 1},{ 2},{ 1,2}}
    从集合 A \mathbf{A} A到集合 B \mathbf{B} B ∈ \in 关系集合是
    { ( 1 , { 1 } ) , ( 1 , { 1 , 2 } ) } \{(1,\{1\}) , (1,\{1,2\}) \} { (1,{ 1}),(1,{ 1,2})}

  这两个例子中,包含和属于其实并不重要,因为包含是集族到集族(元素是集合;集族本身也是集合)的关系,属于是集合到集族的关系。也即关系是两个集合得到的一个新集合,它是两个集合笛卡尔集的子集。

  我们更感兴趣的是集合到它自身的关系,也直接称集合中(集合上)的关系,即从集合 A \mathbf{A} A到集合 A \mathbf{A} A的关系 R \mathbf{R} R,它是 A × A \mathbf{A}\times \mathbf{A} A×A 的子集。

  1. 等价关系 equivalence relation ∼ \sim
    满足:
    i 自反性reflexive: ∀ a ∈ A \forall a\in \mathbf{A} aA,有 ( a , a ) ∈ R (a,a) \in \mathbf{R} (a,a)R
    ii 对称性 ∀ a , b ∈ A \forall a,b \in \mathbf{A} a,bA,如果 ( a , b ) ∈ R (a,b) \in \mathbf{R} (a,b)R,则 ( b , a ) ∈ R (b,a) \in \mathbf{R} (b,a)R
    iii 传递性 ∀ a , b , c ∈ A \forall a,b,c\in \mathbf{A} a,b,cA, 如果 ( a , b ) , ( b , c ) ∈ R (a,b),(b,c) \in \mathbf{R} (a,b),(b,c)R,则 ( a , c ) ∈ R (a,c) \in \mathbf{R} (a,c)R.

  2. 偏序关系 partial order relation ⪯ \preceq
    满足:
    i 自反性
    ii 反对称性 antisymmetry: ∀ a , b ∈ A \forall a,b \in \mathbf{A} a,bA,若 ( a , b ) ∈ R , ( b , a ) ∈ R (a,b)\in\mathbf{R},(b,a) \in \mathbf{R} (a,b)R,(b,a)R,则 a = b a=b a=b
    或者换一种角度:对 A \mathbf{A} A内任意两不同元素 a , b a,b a,b,则 R \mathbf{R} R中最多含有 ( a , b ) , ( b , a ) (a,b),(b,a) (a,b),(b,a)中的一个。(可以直观理解为关系表示的矩阵中除主对角线外的任意一对元素( a i j , a j i a_{ij},a_{ji} aij,aji)中最多只能取一个)
    iii 传递性

  3. 全序关系 total ordering relation
    在偏序关系的基础上,满足:
    i 可比较性 ∀ a , b ∈ A \forall a,b \in \mathbf{A} a,bA,如果 a ≠ b a\ne b a=b,则 ( a , b ) ∈ R (a,b)\in\mathbf{R} (a,b)R ( b , a ) ∈ R (b,a)\in\mathbf{R} (b,a)R.

  4. 严格全序关系 strict total order relation
    在全序关系的基础上,将自反性和反对称性替换为:
    i 反自反性antireflexive: ∀ a ∈ A \forall a\in \mathbf{A} aA,有 ( a , a ) ∉ R (a,a) \notin \mathbf{R} (a,a)/R.(此性质一般不称作自反;“非自反”一般表示“对自反性的否定: ∃ a ∈ A \exist a\in \mathbf{A} aA,使 ( a , a ) ∉ R (a,a) \notin \mathbf{R} (a,a)/R”)


  1. n n n同余关系
    n n n是给定的一个大于1的整数。设 A ∈ Z \mathbf {A} \in \mathbb{Z} AZ,首先表示 A \mathbf {A} A 上的 ”模 n n n同余“ 关系 R = { ( a , b ) ∈ A × A   ∣   a ≡ b ( m o d   n ) } \mathbf {R}=\{ (a,b)\in \mathbf{A}\times \mathbf{A} \ | \ a\equiv b({\rm mod} \ n) \} R={ (a,b)A×A  ab(mod n)}上式中 a ≡ b ( m o d   n ) a\equiv b({\rm mod} \ n) ab(mod n)表示 a a a b b b n n n同余。
    可以证明: A \mathbf {A} A 上的 ”模 n n n同余“ 关系是一种等价关系。
    自反性: a a a b b b n n n同余,则 n n n整除 a − b a-b ab n n n可以整除 a − a = 0 a-a=0 aa=0,即 a ≡ a ( m o d   n ) a\equiv a({\rm mod} \ n) aa(mod n),满足自反性。
    对称性: ∀ a , b ∈ A \forall a,b \in \mathbf{A} a,bA,如果 a ≡ b ( m o d   n ) a\equiv b({\rm mod} \ n) ab(mod n),则 a − b = k ⋅ n a-b=k·n ab=kn,则 b − a = − k ⋅ n b-a=-k·n ba=kn,即 b ≡ a ( m o d   n ) b\equiv a({\rm mod} \ n) ba(mod n) ( b , a ) ∈ R (b,a) \in \mathbf{R} (b,a)R
    传递性,同理可证。

  有了集合 A \mathbf{A} A中的等价关系 R \mathbf{R} R后,就自然有了基于等价关系 R \mathbf{R} R的等价类,任取 a ∈ A a\in \mathbf{A} aA,集合 { x ∈ A   ∣   ( x , a ) ∈ R } \{ x\in\mathbf{A} \ | \ (x,a)\in\mathbf{R} \} { xA  (x,a)R}就是一个等价类。
  以集合 { 1 , 2 , 3 , 4 , 5 } \{1,2,3,4,5\} { 1,2,3,4,5}上的模3同余关系 R \mathbf{R} R为例, R = { ( 1 , 1 ) , ( 2 , 2 ) , … , ( 5 , 5 ) , ( 1 , 4 ) , ( 4 , 1 ) , ( 2 , 5 ) , ( 5 , 2 ) } \mathbf{R}=\{(1,1),(2,2),\dots,(5,5), (1,4) , (4,1) ,(2,5), (5,2) \}

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值