【算法百题之二十】18网易面试题-小易喜欢的序列

 

 

【算法百题之二十】小易喜欢的序列

 

    大家好,我是Lampard~~

    很高兴又能和大家见面了,接下来准备系列更新的是算法题,一日一练,早日升仙!

 

   今天的问题是:

小易非常喜欢拥有以下性质的数列:
1、数列的长度为n
2、数列中的每个数都在1到k之间(包括1和k)
3、对于位置相邻的两个数A和B(A在B前),都满足(A <= B)或(A mod B != 0)(满足其一即可)
例如,当n = 4, k = 7
那么{1,7,7,2},它的长度是4,所有数字也在1到7范围内,并且满足第三条性质,所以小易是喜欢这个数列的
但是小易不喜欢{4,4,4,2}这个数列。小易给出n和k,希望你能帮他求出有多少个是他会喜欢的数列。

 

   思路:

  因为要找出所有符合条件的序列,我们不妨猜想,假定前n-1个元素小易都喜欢,

  那么我们需要的就是把最后一个进行是否喜欢判定就可以了。

  同理,假定前n-2个元素是小易喜欢的,我们只需要判断倒数第三个和倒数第二个元素之间是否满足条件。

  这种解题方法,我们能够联想到递归。

 

 判断是否喜欢的函数:

bool Like(int A, int B)
{
  // 判断B是不是A的条件下,小易喜欢的数
  // A < = B || A mod B!=0
	if (A <= B)
		return true;
	else if (A % B != 0)
		return true;
	else if (A > B && A%B == 0)
		return false;
}

递归函数和测试函数:

void NumOfLike(int n,int k,int A)
{
	// 当n==1时,递归结束
	if (n == 1)
	{
		for (int i = 1; i <= k; i++)
		{
			if (Like(A, i))
				num = num + 1;
		}
	}

	// 当n不等于1时,循环递归
	else
	{
		for (int i = 1; i <= k; i++)
		{
			if(Like(A,i))
			   NumOfLike(n - 1, k, i);
		}
		}
}

int main()
{
	cout << " 请输入数列的长度:" << endl;
	int n;
	cin >> n;

	cout << " 请输入K值:" << endl;
	int k;
	cin >> k;

	for (int i = 1; i <= k; i++)
	{
		NumOfLike(n-1,k,i);
	}

	cout << num;
}

 

测试结果:

OK,今天的博客就到这里,谢谢大家!!!

发布了40 篇原创文章 · 获赞 2 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览