目录
前言
在当今人工智能领域,自然语言处理的关键问题之一是解决文本理解和生成中的挑战。传统的循环神经网络虽然在处理序列数据方面取得了一定成就,但它们存在着顺序执行、长期依赖和梯度消失等问题。Transformer模型,以其独特的结构和注意力机制在机器翻译、文本生成等任务中取得了突破性进展。
1 Transformer结构特点
Transformer 模型的基本原理和组成部分提供了处理序列数据的革命性方法。让我们更深入地了解几个关键概念以及 Transformer 在训练和优化过程中的一些细节。
1.1 注意力机制(Self-Attention)
Scaled Dot-Product Attention: 在自注意力机制中,Query、Key 和 Value 都是通过对输入序列应用线性变换得到的。然后,通过计算 Query 和 Key 的点积,再经过缩放(为了稳定性和控制梯度大小),最后进行 softmax 操作得到每个位置对其他位置的注意力权重。
多头注意力(Multi-Head Attention): 为了提高模型的表征能力,Transformer 使用多个独立的注意力头。每个头都学习到序列中不同的关注点,最后将它们的输出拼接在一起并进行线性变换,得到最终的自注意力表示。