Dijkstra 证明

正如uva136题目(题目大意:所有只由2,3,5因子的乘积的数按小到大排列:1 2 3 4 5 6 8 9......,求第1500个数的大小)一样

[1][2][3][4][5][6][8],第8个数肯定是由前面7个数中的某一个*2或*3或*5得到的,即为:5*2或3*3或2*5之一。

Dijkstra同样如此,不仅由于最短路径本身就具有最优子结构(最短路径中的一段路径一定是最短的),而且还由于Dijkstra算法是计算到源点最短路径由小到大排列序列的原因。

[0][1][2][3][4][5][6][7][8][9],当0-4号节点的最短距离确定之后(并且访问每一个节点时,更新后继节点的距离,所以5号当前值节点是经过0-4号节点中最短的),由于是由小到大的排列,另外一个证明也就不言而喻了,5号节点到源点0的最短距离不可能是经过6-9号节点,因为6-9号节点当前的距离都比5号大,更不用说再加上6-9号到5号之间的距离。当然6-9号的距离有可能还会变小,但肯定是大于5号当前值的(更新于5号之后)。

总结:为了能将问题尽量的转化为具有子问题特征,常常按照某一特征衡量问题的“辈份”,才使得问题容易解决;如字符串越后面的辈份越低,dijkstra中距离越长的辈份越低,等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值