机器学习总结(一):生成模型与判别模型的区别

生成模型:由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:P(Y|X)=P(X,Y)/P(X),表示了给定输入X产生输出Y的生成关系。包括:朴素贝叶斯法、隐马尔科夫模型。特点:收敛速度更快。

判别模型:由数据直接学习决策函数f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型,包括:逻辑斯谛回归、k近邻、感知器、决策树、SVM等。特点:准确率高。直接学习,对数据进行各种程度的抽象、定义特征并使用特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值