[深度学习/人工智能]梯度消失与梯度爆炸

出现原因

梯度消失和梯度爆炸是因为在神经网络中,由于网络层数增多,导致求取的梯度趋于 ∞ \infty (梯度爆炸)和趋于 0(梯度消失)的情况。
参考

解决梯度消失与梯度爆炸的方法

  1. 梯度剪切:防止梯度爆炸,即当梯度超过一定阈值则将梯度限制在这个阈值范围内
  2. 正则化项:
    L o s s = ( y − W T x ) 2 + α ∣ ∣ w ∣ ∣ 2 Loss=(y-W^Tx)^2+\alpha||w||^2 Loss=(yWTx)2+αw2
    其中, α \alpha α是正则项系数,作用是防止w过大或者过小
  3. 激活函数改用ReLU
  4. 残差神经网络(跨层连接)
  5. LSTM:每一层的单元都可以选择遗忘和记忆的状态
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值