近远场变换03——麦克斯韦方程

本文介绍了麦克斯韦方程的积分形式及其与微分形式的转化过程,通过散度和旋度概念,详细阐述了高斯电场、磁场定律和法拉第、安培-麦克斯韦定律的微分表达。同时提及了哈密顿和拉普拉斯算子在波动方程中的作用。
摘要由CSDN通过智能技术生成

麦克斯韦方程积分形式

为便于理解,我们将从积分形式麦克斯韦方程向微分形式麦克斯韦方程推导。积分形式麦克斯韦方程大家应该不陌生,其表达式来自于我们高中就学过的电磁场四大定律:高斯电场定律、高斯磁场定律、法拉第定律、安培环路定理。 

类别

名称积分形式物理含义
静态高斯电场定律\oint_{S}^{}E\cdot da=\frac{1}{\varepsilon _{0}}Q_{enc}通过闭合曲面的电通量(左式)与这个曲面包含的电荷量成正比(右式)
高斯磁场定律\oint_{S}^{}B\cdot da=0闭合曲面包含的磁通量(左式)恒为0(右式)
动态法拉第定律\oint_{C}^{}E\cdot dl=-\frac{d}{dt}\int_{S}^{}B\cdot da

曲面磁通量变化率(右式)等于感生电场的环流(左式)

注意:出现负号是因为系统一定会趋于平衡

安培-麦克斯韦定律\oint_{C}^{}B\cdot dl=\mu _{0}\left ( I_{enc}+\varepsilon _{0}\frac{d}{dt}\int_{S}^{}E\cdot da \right )感生磁场的环流(左式)与曲面内的电流、电通量变化率成正比(右式)

表中,积分符号下标S表示对曲面积分,积分符号下标C表示对曲线积分,下标enc表示包含在某曲线/曲面内的,E表示电场强度,B表示磁场强度,Q表示电荷量,\varepsilon _{0}表示真空介电常数,I表示电流,\mu _{0}表示真空磁导率。

哈密顿算子(\triangledown算子)

其运算规则如下

\bigtriangledown =\frac{\partial }{\partial x}\vec{x}+\frac{\partial }{\partial y}\vec{y}+\frac{\partial }{\partial z}\vec{z}

\bigtriangledown f=\frac{\partial f}{\partial x}\vec{x}+\frac{\partial f}{\partial y}\vec{y}+\frac{\partial f}{\partial z}\vec{z}

\bigtriangledown \cdot \vec{A}=div(A)=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}

\bigtriangledown \times \vec{A}==curl(A)=(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z})\vec{x}+(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x})\vec{y}+(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y})\vec{z}

哈密顿算子(\bigtriangledown)与拉普拉斯算子(\bigtriangleup)的关系如下(下一小节推导波动方程时会用到)

\bigtriangleup =\bigtriangledown \cdot \bigtriangledown =\bigtriangledown ^{2}

麦克斯韦方程微分形式

1.高斯电场定律

已知其积分表达形式为

\oint_{S}^{}E\cdot da=\frac{1}{\varepsilon _{0}}Q_{enc}

先看左式,闭合曲面积分要取微分,可以考虑令该曲面无穷小,即这个曲面包含的体积趋于0,而后整体除以闭合曲面包含的体积\Delta V;再看右式,取无穷小体积的闭合曲面内电荷量,除以\Delta V,显然\frac{Q_{enc}}{\Delta V}物理意义等同于电荷密度,电荷密度写成\rho。得到微观表达式

\lim_{\Delta V\to 0}\frac{1}{\Delta V}\oint_{S}^{}E\cdot da=\frac{1}{\varepsilon _{0}}\cdot \frac{Q_{enc}}{\Delta V}=\frac{\rho }{\varepsilon _{0}}

对该微观表达式的左式,我们定义其为散度(divergence),即

div\left ( E \right )=\lim_{\Delta V\to 0}\frac{1}{\Delta V}\oint_{S}^{}E\cdot da

散度即为通过无穷小闭合曲面的通量和闭合曲面体积的比值。因此高斯电场定律微分形式可写为

div\left ( E \right )=\frac{\rho }{\varepsilon _{0}}

 引入了\triangledown算子,于是有

\bigtriangledown \cdot E=\frac{\rho }{\varepsilon _{0}}

2.高斯磁场定律

已知其积分表达形式为

\oint_{S}^{}B\cdot da=0

 与高斯电场定律的思想一致,依然是将曲面缩小至无穷小,此时左式就变为了磁场的散度,由此得到

\bigtriangledown \cdot B=0

3.法拉第定律

已知其积分表达形式为

\oint_{C}^{}E\cdot dl=-\frac{d}{dt}\int_{S}^{}B\cdot da

同样的,还是无限缩小,但此时左式是一个环流,构成的是非闭合曲面。于是我们定义无穷小非闭合曲面的环流和曲面面积的比值为一个新的量,称之为旋度,即

curl(E)=\bigtriangledown \times E=\lim_{\Delta s \to0 }\frac{1}{\Delta S}\oint_{C}^{}E\cdot dl

而对于右式,当曲面缩小至无穷小,对磁通量(B\cdot da)求导变为对磁感应强度(B)求偏导,即右式变为-\frac{\partial B}{\partial t}

因此,法拉第定律微分表达式为

\bigtriangledown \times E=-\frac{\partial B}{\partial t}

4.安培-麦克斯韦定律

已知其积分表达形式为

\oint_{C}^{}B\cdot dl=\mu _{0}\left ( I_{enc}+\varepsilon _{0}\frac{d}{dt}\int_{S}^{}E\cdot da \right )

左式同法拉第定律,可缩小至无穷小改写为旋度形式,即\bigtriangledown \times B

右式第一项当缩小至无穷小时电流(I)则变为了电流密度(J),注意这里的电流密度是电流除以通过曲面的面积,即单位为A/m^{2}而非A/m^{3}。右式第一项变为\mu _{0}J

右式第二项同法拉第定律,对电通量求导变为对电场求偏导。右式第二项变为\mu _{0}\varepsilon _{0}\frac{\partial E}{\partial t}

因此,安培-麦克斯韦定律微分表达式为

\bigtriangledown \times B=\mu _{0}(J+\varepsilon _{0}\frac{\partial E}{\partial t})

 5.麦克斯韦方程组最终表达形式

\bigtriangledown \cdot E=\frac{\rho }{\varepsilon _{0}}

\bigtriangledown \cdot B=0

\bigtriangledown \times E=-\frac{\partial B}{\partial t}

\bigtriangledown \times B=\mu _{0}(J+\varepsilon _{0}\frac{\partial E}{\partial t})

  • 6
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值