1. 多项式拟合的基本概念
多项式拟合(Polynomial Fitting)是一种数据拟合方法,目的是用一个多项式函数来近似描述一组离散数据点之间的关系。它在数据分析、信号处理、工程建模等领域被广泛应用。
对于一组实验数据点 (x1,y1),(x2,y2),…,(xn,yn), 我们希望找到一个 n 阶多项式:
y=C0+C1x+C2x^2+C3x^3+C4x^4+...+C4n^n
使得这个多项式尽可能准确地通过这些点。
当 n=4时,就是四阶多项式拟合:
y=C0+C1x+C2x^2+C3x^3+C4x^4
其中:
- C0,C1,C2,C3,C4 是待求的系数,由实验数据确定。
- x 是输入变量,y 是相应的输出变量。
2. 为什么使用四阶拟合?
在实际应用中,不同阶数的多项式拟合有不同的适用场景:
- 一阶(线性)拟合:形如 y=C0+C1x,适用于数据变化近似线性的情况。
- 二阶(抛物线)拟合:适用于数据有二次关系,如加速度公式。
- 三阶或四阶拟合:用于处理更复杂的非线性关系,例如传感器校准、非均匀变化的物理量等。
3. 在风速传感器校准中的应用
在风速测量中,我们的目标是通过传感器输出的 温度补偿变量 X 来计算真实风速 U。实验中,我们获取了一组 X 和对应的 对照风速传感器测得的真实风速 U_ref,然后使用四阶拟合来建立它们的关系:
U_ref = C0+C1X+C2X^2+C3X^3+C4X^4
这里:
- X 是 传感器的温度补偿变量,由电压Vb和Vc计算得到。
- U 是 真实风速,由标准风速传感器测得。
- 通过拟合,我们可以获得最优的 C0,C1,C2,C3,C4,然后在实际使用中,只需输入 X 就能计算出 U。
matlab 代码
% X & U_ref
X = [0.2, 0.5, 1.1, 1.8, 2.6, 3.4, 4.5];
U_ref = [0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10.0];
% 4th-order polynomial
C = polyfit(X, U_ref, 4);
% C0, C1, C2, C3, C4
disp('calibration coefficients C0, C1, C2, C3, C4:');
disp(C);
% Plot the calibration curve
X_test = linspace(min(X), max(X), 100);
U_fit = polyval(C, X_test);
figure;
plot(X, U_ref, 'ro', 'MarkerSize', 8, 'DisplayName', 'Experimental Data');
hold on;
plot(X_test, U_fit, 'b-', 'LineWidth', 2, 'DisplayName', 'Fitted Curve');
xlabel('X (Dimensionless Variable)');
ylabel('Wind Speed U (m/s)');
legend;
grid on;
title('Wind Speed Calibration Curve');
结果