check CUDA and CUDNN version

本文介绍如何查询系统中安装的CUDA和cuDNN版本信息。通过使用命令行工具cat,可以轻松获取存储在文件version.txt中的CUDA版本,以及通过grep命令从cudnn.h头文件中提取cuDNN的主要版本号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cuda 版本 
cat /usr/local/cuda/version.txt

cudnn 版本 
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

### 如何正确地从系统中卸载 CUDAcuDNN #### 1. 卸载已安装的 CUDA 软件包 通过控制面板中的程序管理功能可以移除与 CUDA 相关的软件组件。具体操作如下: 打开系统的 **控制面板** → 进入 **程序和功能** 页面 → 查找并选择所有与目标 CUDA 版本相关的条目进行卸载[^2]。这些通常包括但不限于以下几个部分: - NVIDIA CUDA Samples {version} - NVIDIA CUDA Runtime {version} - NVIDIA CUDA Documentation {version} - NVIDIA CUDA Development Toolkit {version} 完成上述步骤后,确保所有的相关项目都被完全清除。 #### 2. 清理残留文件夹 即使完成了官方渠道上的卸载流程,仍可能存在一些未被自动清理掉的手动配置路径或者遗留数据目录。建议手动检查以下常见位置是否存在残余文件,并将其删除: - `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA` 下对应版本号的文件夹。 - 用户自定义的工作区或其他可能存储有库头文件、文档说明的地方也需要仔细排查一遍是否有遗漏的内容待处理。 #### 3. 删除环境变量设置 为了保证旧版CUDA不再影响新版本的行为表现,在操作系统层面还需要调整PATH以及其他关联性的全局或用户的特定环境参数设定。这一步骤非常重要因为错误保留下来的路径可能会干扰未来的新部署尝试[^4]。 进入高级系统属性界面->环境变量选项卡下分别针对System Variables以及User variables两大部分逐一审查其中是否还存在指向先前已被淘汰之CUDA实例的相关记录;一旦发现即刻予以剔除。 #### 4. 移除注册表键值项 最后也是最容易忽略的一环就是Windows Registry Editor内部所保存的历史痕迹。利用内置工具regedit.exe启动注册表编辑器之后借助快捷组合键Ctrl+F激活搜索模式依次输入关键字如"CUDA","cudnn"等等来定位每一个匹配的结果对象再确认无误后再执行相应的删改动作[^1]。 值得注意的是此过程需格外谨慎以免误伤其它正常运行所需的重要结构从而引发不可预期的问题发生所以最好事先做好完整的备份工作以防万一。 ```python import os # Example Python script to check environment variables programmatically. def list_env_variables(): env_vars = dict(os.environ) for key, value in env_vars.items(): if 'CUDA' in key or 'cudnn' in key.lower(): print(f"{key}: {value}") list_env_variables() ``` 以上便是整个彻底清除既有CUDAcuDNN安装状态的标准方法论概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值