一文解决ubuntu20上3060显卡驱动,cuda,cudnn,torch的安装和卸载

本文详细介绍了在Ubuntu 20.04系统下,如何针对NVIDIA 3060显卡安装和卸载驱动、CUDA 11.1、CUDNN 8.9.0,以及安装和卸载PyTorch的步骤。内容包括显卡驱动的匹配与安装、CUDA和CUDNN的下载与配置、PyTorch和torchvision的对应版本选择与安装、环境变量设置等。此外,还提到了Ubuntu系统的安装和ROS的快速安装方法。
摘要由CSDN通过智能技术生成


前言

本文主要介绍在ubuntu20下根据自己的python版本来确定torch版本,从而确定cuda和cudnn版本完成安装(注意,本文可能会同时看到cuda11和cuda10,因为是第一次安装cuda10在3060显卡跑不起来就换成cuda11了),本文版本为python-3.8,torch-1.8.0,torchvision-0.9.0,cuda-11.1.1,cudnn-8.9.0


1、显卡驱动安装

(1)通过以下命令查看匹配的驱动:

ubuntu-drivers devices

在这里插入图片描述
从上图看到recommended 470,故安装470版本的驱动

(2)驱动安装方法1,

sudo ubuntu-drivers autoinstall 

(3) 推荐 驱动安装方法2,进入官网下载对应的版本

在这里插入图片描述

(4)安装相关依赖,

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

(5) 禁用系统默认显卡驱动,打开文件

sudo gedit /etc/modprobe.d/blacklist.conf

在文件末尾输入,

blacklist nouveau
options nouveau modeset=0

保存(ctrl+s)后手动更新;

sudo update-initramfs -u

重启后输入以下命令,无输出则禁用成功,

lsmod | grep nouveau

(6)配置环境变量,gedit命令打开配置文件:

sudo gedit ~/.bashrc

在文件末尾输入,

export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH

然后,通过下面命令更新以下,

source ~/.bashrc

(7)安装NVIDIA驱动

sudo chmod  a+x NVIDIA-Linux-x86_64-530.41.03.</
Ubuntu安装显卡驱动CuDNNCUDA和PyTorch可以按照以下步骤进行: 1. 安装显卡驱动:可以通过以下几种方式安装显卡驱动: - 通过"Software & Updates"工具在“Additional Drivers”选项卡中选择一个适用于您的显卡型号的驱动程序,并点击“Apply Changes”进行安装。 - 通过命令行使用`ubuntu-drivers devices`命令查看可用的驱动,然后使用`sudo ubuntu-drivers autoinstall`命令自动安装推荐的驱动。 2. 安装CuDNNCuDNN是NVIDIA加速库,可提供用于深度学习的GPU加速功能。可以按照以下步骤安装CuDNN: - 前往NVIDIA官方网站,下载适用于您的CUDA版本的CuDNN压缩文件(通常需要注册NVIDIA开发者账号)。 - 将CuDNN压缩文件解压缩到一个合适的位置,例如`~/cuda`文件夹。 - 打开终端,使用`cd`命令进入CuDNN解压缩文件的路径,并执行以下命令安装CuDNN: ``` sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 3. 安装CUDACUDA是用于在NVIDIA GPU上进行并行计算的平行计算平台和API。可以按照以下步骤安装CUDA: - 前往NVIDIA官方网站,选择适用于您的显卡和操作系统的CUDA版本,并下载对应的运行文件(通常需要注册NVIDIA开发者账号)。 - 打开终端,使用`cd`命令进入CUDA运行文件所在的目录,并执行以下命令安装CUDA: ``` sudo sh cuda*.run ``` - 执行安装向导中的步骤,根据提示进行安装配置,包括选择安装路径和设置环境变量。 - 安装完成后,可以通过执行`nvcc --version`命令验证CUDA安装情况。 4. 安装PyTorch:PyTorch是一个用于构建深度学习模型的开源Python库。可以按照以下方式安装PyTorch: - 打开终端,执行以下命令安装PyTorch: ``` pip install torch torchvision ``` - 在安装过程中,可能需要下载和编译一些依赖项。请耐心等待安装完成。 安装完成后,您可以在Ubuntu上使用显卡驱动CuDNNCUDA和PyTorch进行深度学习任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值