词汇表征(Word Representation)

来源:Coursera吴恩达深度学习课程

自然语言处理中一个很关键的概念就是词嵌入(word embeddings),这是语言表示的一种方式,可以让算法自动的理解一些类似的词。如下图,我们先开始讨论词汇表征(word representation)

目前为止我们一直都是词汇表(vocabulary)来表示词,词汇表可能是10000个单词,我们一直one-hot向量来表示词。比如man在词典里是第5391个,那么就可以表示成一个向量,只在第5391处为1,我们用O_5391代表这个量,这里的O代表one-hot。接下来,如果woman是编号9853,那么就可以用O_9853来表示,这个向量只在9853处为1,其他为0,其他的词king、queen、apple、orange都可以这样表示出来,这种表示方法的一大缺点(weakness)就是它把每个词孤立起来,这样使得算法对相关词的泛化能力不强。

举个例子,假如我们已经学习到了一个语言模型,当你看到“I want a glass of orange ___”,那么下一个词会是什么?很可能是juice。即使你的学习算法已经学到了“I want a glass of orange juice”,但如果看到“I want a glass of apple ___”,因为算法不知道apple和orange的关系很接近,就像man和woman,king和queen一样。所以算法很难从已经知道的orange juice是一个常见的东西,而明白apple juice也是很常见的东西或者说常见的句子。这是因为任何两个one-hot向量的内积都是0,如果你取两个向量,比如king和queen,然后计算它们的内积,结果就是0。如果用apple和orange来计算它们的内积,结果也是0。很难区分它们之间的差别,因为这些向量内积都是一样的,所以无法知道apple和orange要比king和orange,或者queen和orange相似地多。

换一种方式表示会更好,如下图所示:

如果我们不用one-hot表示,而是用特征化的表示(learn a featurized representation)来表示每个词,man,woman,king,queen,apple,orange或者词典里的任何一个单词,我们学习这些词的特征或者数值

对于这些词,(1)比如第一个特征是性别(Gender)。假定男性的性别为-1,女性的性别为+1,那么man的性别值可能就是-1,而woman就+1。最终根据经验king就是-0.95,queen是+0.97,apple和orange没有性别可言。

(2)另一个特征可以是这些词有多高贵(Royal),man,woman和高贵没太关系,所以它们的特征值接近0。而king和queen很高贵,取值更大一些,apple和orange跟高贵也没太大关系。

(3)那么年龄(Age)呢?man和woman一般没有年龄的意思,也许man和woman隐含着成年人的意思,但也可能是介于young和old之间,所以它们(man和woman)的值也接近0。而通常king和queen都是成年人,apple和orange跟年龄更没什么关系了。

(4)还有一个特征,这个词是否是食物(Food),man不是食物,woman不是食物,king和queen也不是,但apple和orange是食物。

当然还可以有很多的其他特征,从尺寸大小(Size),花费多少(Cost),这个东西是不是活的(Alive),是不是一个动作(Action),或者是不是名词(Noun)或者是不是动词(Verb),还是其他的等等。

在这里我们假设有300个不同的特征,这样的话你就有了这一列数字(上图蓝色竖框),有一个300维的向量来表示man这个词。用符号e_5391来表示。同样用这个300维的向量用来表示woman这个词,符号为e_9853,这些其他的例子也一样。现在,如果用这种表示方法来表示apple和orange这些词,那么apple和orange的这种表示会非常相似。这样对于已经知道orange juice的算法很大几率上也会明白apple juice这个东西,这样对于不同的单词算法会泛化的更好。

接下来的讲解中有一种学习词嵌入的方式,现在只需要理解这种高维特征的表示能够比one-hot更好的表示不同的单词。而我们最终学习的特征不会像这里一样这么好理解,新的特征表示的东西肯定会更难搞清楚。尽管如此,接下来要学的特征表示方法却能使算法高效地发现apple和orange会比king和orange,queen和orange更加相似。

如果我们能够学习到一个300维的特征向量(词嵌入),通常我们可以把这300维的数据嵌入到一个二维空间里实现可视化。常用的可视化算法是t-SNE算法来自于Laurens van der Maaten 和 Geoff Hinton的论文

如上图,如果观察这种词嵌入的表示方法,我们看到man和woman这些词聚集在一块,king和queen聚集在一块,表示人的单词也都聚集在一起。动物都聚集在一起,水果也都聚集在一起,像1、2、3、4这些数字也聚集在一起。如果把这些生物看成一个整体,他们也聚集在一起。

就整体而言,这种词嵌入算法(word embeddings algorithms)对于相近的概念,学到的特征也比较类似,在对这些概念可视化的时候,最终把它们映射为相似的特征向量。这种表示方式用的是在300维空间里的特征表示,这叫做嵌入(embedding)。之所以叫嵌入的原因是,你可以想象一个300维的空间,这里用个3维的代替。现在取每一个单词比如orange,它对应一个3维的特征向量,所以这个词就被嵌在这个300维空间里的一个点上了,apple这个词就被嵌在这个300维空间的另一个点上。为了可视化,t-SNE算法把这个空间映射到低维空间,也可以画出一个2维图像然后观察,这就是这个术语嵌入的来源

以上就是词嵌入的概念。

说明:记录学习笔记,如果错误欢迎指正!转载请联系我。

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值