OpenCV与AI深度学习 | 使用YOLOv8做目标检测、实例分割和图像分类(包含实例操作代码)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:使用YOLOv8做目标检测、实例分割和图像分类

0 导  读

        本文主要介绍YOLOv8及使用它做目标检测、实例分割和图像分类演示,仅供参考。

1 背景介绍

    YOLOv8是来自Ultralytics的最新的基于YOLO的对象检测模型系列,提供最先进的性能。

    利用以前的 YOLO 版本,YOLOv8模型更快、更准确,同时为训练模型提供统一框架,以执行:

  • 物体检测
  • 实例分割
  • 图像分类

    下面是使用YOLOv8做目标检测和实例分割的演示视频:

YOLOv8做目标检测和实例分割的演示视频

2 YOLOv8的新特性与可用模型

        Ultralytics为YOLO模型发布了一个全新的存储库。它被构建为 用于训练对象检测、实例分割和图像分类模型的统一框架。

        以下是有关新版本的一些主要功能:

  • 用户友好的 API(命令行 + Python)。
  • 更快更准确。
  • 支持:
    • 物体检测
    • 实例分割
    • 图像分类
  • 可扩展到所有以前的版本。
  • 新骨干网络。
  • 新的无锚头。
  • 新的损失函数。

        YOLOv8 还高效灵活地支持多种导出格式,并且该模型可以在 CPU 和 GPU 上运行。

        YOLOv8 模型的每个类别中有五个模型用于检测、分割和分类。YOLOv8 Nano 是最快和最小的,而 YOLOv8 Extra Large (YOLOv8x) 是其中最准确但最慢的。

        YOLOv8 捆绑了以下预训练模型:

  • 在图像分辨率为 640 的 COCO 检测数据集上训练的目标检测检查点。
  • 在图像分辨率为 640 的 COCO 分割数据集上训练的实例分割检查点。
  • 在图像分辨率为 224 的 ImageNet 数据集上预训练的图像分类模型。

如下是使用YOLOv8x做目标检测和实例分割模型的输出:


3 如何使用YOLOv8

    要充分发挥YOLOv8的潜力,需要从存储库和ultralytics包中安装要求。要安装要求,我们首先需要克隆存储库。

git clone https://github.com/ultralytics/ultralytics.git
pip install -r requirements.txt

在最新版本中,Ultralytics YOLOv8提供了完整的命令行界面 (CLI) API 和 Python SDK,用于执行训练、验证和推理。要使用yoloCLI,我们需要安装ultralytics包。

pip install ultralytics

【1】如何使用命令行界面 (CLI) 使用 YOLOv8?

        安装必要的包后,我们可以使用命令访问 YOLOv8 CLI yolo。以下是使用yoloCLI 运行对象检测推理的示例。

yolo task=detect \
mode=predict \
model=yolov8n.pt \
source="image.jpg"

        该task标志可以接受三个参数:detect、classify和segment。同样,模式可以是train、val或之一predict。我们也可以像export导出经过训练的模型时一样传递模式。

【2】如何通过Python API使用YOLOv8?

我们还可以创建一个简单的Python文件,导入YOLO模块并执行我们选择的任务。

from ultralytics import YOLO

model = YOLO("yolov8n.pt")  # load a pretrained YOLOv8n model

model.train(data="coco128.yaml")  # train the model
model.val()  # evaluate model performance on the validation set
model.predict(source="https://ultralytics.com/images/bus.jpg")  # predict on an image
model.export(format="onnx")  # export the model to ONNX format

例如,上述代码首先会在COCO128数据集上训练YOLOv8 Nano模型,在验证集上进行评估,并对样本图像进行预测。

让我们使用yoloCLI 并使用对象检测、实例分割和图像分类模型进行推理。

【3】目标检测的推理结果

以下命令使用YOLOv8 Nano模型对视频运行检测。

yolo task=detect mode=predict model=yolov8n.pt source='input/video_3.mp4' show=True

推理在笔记本电脑GTX1060 GPU上以接近105 FPS的速度运行。我们得到以下输出:

图片

YOLOv8 Nano 模型在几帧中将猫混淆为狗。让我们使用 YOLOv8 Extra Large 模型对同一视频运行检测并检查输出:

yolo task=detect mode=predict model=yolov8x.pt source='input/video_3.mp4' show=True

Extra Large模型在GTX1060 GPU上的平均运行速度为 17 FPS。

图片

【4】实例分割的推理结果

使用YOLOv8 实例分割模型运行推理同样简单。我们只需要更改上面命令中的task和model名称。

yolo task=segment mode=predict model=yolov8x-seg.pt source='input/video_3.mp4' show=True

因为实例分割与对象检测相结合,所以这次的平均 FPS 约为 13。

图片

分割图在输出中看起来非常干净。即使猫在最后几帧中躲在方块下,模型也能够检测并分割它。

【5】图像分类推理结果

最后,由于YOLOv8已经提供了预训练的分类模型,让我们使用该yolov8x-cls模型对同一视频进行分类推理。这是存储库提供的最大分类模型。

yolo task=classify mode=predict model=yolov8x-cls.pt source='input/video_3.mp4' show=True

图片

默认情况下,视频使用模型预测的前5个类进行注释。在没有任何后处理的情况下,注释直接匹配ImageNet类名。

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

### 使用深度学习进行点云数据中单个树木分割 #### 基于图像的方法 对于点云中的单木分割,一种常见的方式是采用基于图像的方法。这类方法首先将三维点云投影至二维平面形成图像,随后利用卷积神经网络(CNNs)执行像素级的语义分割操作。这种方法的优势在于可以直接借用成熟的二维图像处理技术预训练模型,减少开发成本并加速收敛过程[^1]。 然而,在实际应用过程中需要注意的是,由于树冠形状复杂多变以及遮挡现象的存在,简单的正交投影可能会丢失部分重要的空间信息,影响最终分割效果。因此,研究者们提出了多种改进方案,比如引入多个视角下的投影图组合或者融合额外的特征描述子来增强表达能力。 #### 基于点云的方法 另一种更为直接有效的方式则是完全绕过中间的成像阶段,直接针对原始点云构建专门用于此任务的神经网络架构。此类方法能够充分利用点云本身所携带的空间位置关系及其局部几何特性来进行更精准的目标检测实例分割工作。例如PointNet++、KPConv等都是当前比较流行的适用于自然物体识别(包括但不限于树木)的框架之一[^2]。 这些模型通常会先通过采样机制选取具有代表性的关键点作为锚定点;接着围绕每一个选定的关键点建立局部邻域,并提取该区域内所有样本之间的相对位移向量构成新的输入形式;最后再经过一系列编码解码层逐步恢复出完整的形态结构直至完成整个个体轮廓勾勒为止。 #### RandLANet 实战教程推荐 如果希望进一步深入了解具体实现细节,则可以参考《从头开始学习点云语义分割:RandLANet实战教程》这份资料。它不仅涵盖了必要的理论基础讲解,还提供了详尽的操作指南帮助读者快速上手实践项目开发流程。特别是其中提到的RandLA-Net算法因其高效性鲁棒性而被广泛应用于各类户外环境感知场合当中,非常适合用来解决诸如森林资源调查等领域内的单株树木自动化测量需求[^3]。 ```python import torch from randlanet import RandLANet, get_model_params # 定义参数配置 params = { 'num_classes': 8, 'ignored_label_inds': [0], 'batch_size': 4, } model_params = get_model_params(params) # 初始化模型 net = RandLANet(model_params).cuda() print(net) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值