本文来源公众号“DeepDriving”,仅用于学术分享,侵权删,干货满满。
原文链接:目标检测中的非极大值抑制(NMS)算法
0 导读
经典的Anchor-Based目标检测算法(YOLO、SSD、Faster-RCNN)中都包含一个生成候选边界框的过程,出于提高目标检测召回率的目的,通常会生成数量众多的候选边界框,这些候选边界框有不同的长宽比,同时每个候选边界框都会被分配一个置信度分数。在目标检测的后处理阶段,可以先通过阈值过滤掉大部分置信度低于阈值的候选边界框,但是对于同一个目标,还是有可能会有好几个置信度高于阈值的边界框会留下来,这时候就需要通过非极大值抑制(Non-Max Suppression, NMS)算法来去掉重复的边界框。下图展示了目标检测算法中从生成候选边界框到用NMS算法筛选边界框的过程。
1 NMS算法的原理
由于目标在图像中的形状和大小可能是各种各样的,所以为了能够较好地在图像中检测这些目标,通常会设计去生成数量众多、长宽各异的候选边界框。但是对于一个目标检测任务来说,理想的情况是一个目标只需输出一个最准确的边界框即可。