本文来源公众号“计算机视觉研究院”,仅用于学术分享,侵权删,干货满满。
城市的火灾可能会造成毁灭性的后果,造成财产损失,并危及公民的生命。传统的火灾探测方法在准确性和速度方面存在局限性,使得实时探测火灾具有挑战性。
01 前景概要
我们提出了一种基于YOLOv8算法的智能城市火灾检测改进方法,称为智能火灾检测系统(SFDS),该方法利用深度学习的优势实时检测特定火灾特征。与传统的火灾探测方法相比,SFDS方法可提高火灾探测的准确性,减少误报,并具有成本效益。它还可以扩展到检测智能城市中感兴趣的其他对象,如天然气泄漏或洪水。所提出的智能城市框架由四个主要层组成:(i)应用层、(ii)雾层、(iii)云层和(iv)物联网层。所提出的算法利用雾和云计算以及物联网层实时收集和处理数据,从而加快响应时间,降低财产和人类生命受损的风险。SFDS在准确度和召回率方面都取得了最先进的性能,所有类别的高准确率为97.1%。所提出的方法有几个潜在的应用,包括公共区域的消防安全管理、森林火灾监测和智能安全系统。
02 动机
智慧城市正在彻底改变我们对城市化、可持续性和安全的思考方式。随着世界向智能城市迈进,确保公民及其财产的安全变得越来越重要。火灾是最危险和威胁生命的灾难之一,它可能严重危