机器学习算法与Python实战 | AI Agent入门:Agent角色指令设计

本文来源公众号“机器学习算法与Python实战”,仅用于学术分享,侵权删,干货满满。

原文链接:AI Agent入门:Agent角色指令设计

0、概要

Agent是干什么的?Agent的核心思想是使用语言模型(LLM)作为推理的大脑,以制定解决问题的计划、借助工具实施动作。在agents中几个关键组件如下:

LLM:制定计划和思考下一步需要采取的行动。

Tools:解决问题的工具

Toolkits:用于完成特定目标所需的工具组。一个toolkit通常包含3-5个工具。

AgentExecutor:AgentExecutor是agent的运行时环境。这是实际调用agent并执行其选择的动作的部分。

1、Agent整体架构

代理(Agents)涉及LLM做出决策以确定要采取哪些行动,执行该行动,查看观察结果并重复执行步骤直到完成。

在LLM驱动的自主代理系统中,LLM充当代理的大脑,并辅以几个关键功能:

规划

子目标拆解解:agent将大型任务拆解为小型的、可管理的子目标,从而能够高效处理复杂任务。

反思和改进:agent可以从过去的行为中进行自我批评和自我反省。这种从错误中吸取教训,并对未来的步骤进行改进的思维可以有效提高最终结果。真种思维方式来自ReAct,其大致格式为:Thought: ...Action: ...Observation: ... (Repeated

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值