python | akshare,一个超强的 开源Python 金融数据接口库!

本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。

原文链接:akshare,一个超强的 Python 库!

大家好,今天为大家分享一个超强的 Python 库 - akshare。

Github地址:https://github.com/akfamily/akshare

金融市场中,数据是做出明智决策的关键。无论是股票、基金、期货、外汇还是宏观经济数据,都需要有准确、及时的数据支持。AkShare 是一个开源的 Python 金融数据接口库,专门用于获取国内外金融市场数据、经济数据以及其他相关数据。AkShare 的目标是为量化交易、投资研究和金融数据分析提供一站式的数据接口,帮助开发者和研究者便捷地获取所需数据。

1 安装

AkShare 可以通过 pip 进行安装,安装过程非常简单:

pip install akshare

安装完成后,就可以在 Python 项目中使用 AkShare 获取各种金融数据。

2 特性

  1. 多市场支持:支持股票、期货、外汇、债券、基金等多个金融市场的数据。

  2. 数据来源广泛:数据来自多种可信来源,包括新浪财经、东方财富、Wind 等。

  3. 实时和历史数据:可以获取金融市场的实时数据和历史数据,便于数据分析和建模。

  4. 经济与宏观数据:除了金融市场数据,还提供了丰富的经济数据和宏观数据。

  5. 开源免费AkShare 是开源项目,免费供用户使用,并且有活跃的社区进行更新和维护。

3 基本功能

3.1. 获取股票行情数据

AkShare 最常用的功能之一是获取股票市场的数据。通过 AkShare,可以轻松获取实时股票行情、历史数据以及分时数据等。

import akshare as ak

# 获取 A 股实时行情数据
stock_zh_a_spot_df = ak.stock_zh_a_spot()
print(stock_zh_a_spot_df.head())

在这个示例中,调用 stock_zh_a_spot 函数获取 A 股的实时行情数据,并输出前五行的内容。数据包括股票代码、名称、当前价格、涨跌幅等信息。

3.2. 获取股票历史数据

除了实时数据外,AkShare 还支持获取历史股票行情数据,方便用于回测和历史数据分析。

# 获取某只股票的历史数据
stock_zh_a_hist_df = ak.stock_zh_a_hist(symbol="000001", period="daily", start_date="20230101", end_date="20231001")
print(stock_zh_a_hist_df.head())

这个例子展示了如何获取 000001(平安银行)的日线历史数据,用户可以自定义时间区间。

3.3. 获取基金数据

AkShare 不仅限于股票市场,它还支持获取基金的相关数据,如基金净值、基金持仓等。

# 获取基金净值数据
fund_em_value_df = ak.fund_em_value(code="519069")
print(fund_em_value_df.head())

这个例子展示了如何获取指定基金(519069)的净值数据,适合用于基金分析和比较。

4 高级功能

4.1. 获取宏观经济数据

除了金融市场数据外,AkShare 还提供了丰富的宏观经济数据,如 GDP、通货膨胀率、失业率等。通过这些数据,用户可以进行经济大势的分析和预测。

# 获取中国历年 GDP 数据
macro_china_gdp_yearly_df = ak.macro_china_gdp_yearly()
print(macro_china_gdp_yearly_df.head())

该代码展示了如何获取中国历年的 GDP 数据,用于宏观经济分析和趋势预测。

4.2. 获取期货数据

AkShare 还支持期货市场的数据查询,包括国内外期货数据。期货市场的数据对于大宗商品分析、量化交易和风险对冲至关重要。

# 获取国内期货实时行情
futures_zh_spot_df = ak.futures_zh_spot()
print(futures_zh_spot_df.head())

这个例子展示了如何获取国内期货的实时行情数据,包括品种、价格、涨跌幅等信息。

4.3. 获取外汇和国际市场数据

如果需要获取外汇或国际市场的数据,AkShare 也提供了相关的接口。用户可以获取外汇汇率、国际股市行情等全球数据,便于进行跨市场分析。

# 获取外汇汇率数据
currency_boc_sina_df = ak.currency_boc_sina()
print(currency_boc_sina_df.head())

该示例展示了如何获取中国银行的外汇牌价,便于进行外汇市场的实时分析。

4.4. 股票分红、配股数据

在量化交易策略中,股票的分红和配股是影响投资收益的重要因素。通过 AkShare,用户可以获取到股票的分红配股数据,帮助更精确地构建交易模型。

# 获取股票分红配股数据
stock_zh_dividend_df = ak.stock_zh_dividend(symbol="000001")
print(stock_zh_dividend_df.head())

这个例子展示了如何获取 000001(平安银行)的分红配股历史数据,适合用于分析股票长期投资回报。

5 实际应用场景

5.1. 量化交易策略研究

在量化交易策略中,数据是关键。AkShare 提供了丰富的金融市场数据,涵盖了从股票到期货、外汇等多个领域,帮助量化研究者构建、回测交易策略。无论是获取历史数据进行回测,还是使用实时数据进行策略调优,AkShare 都能提供强大的数据支持。

5.2. 宏观经济分析

经济学家或金融研究人员可以使用 AkShare 提供的宏观经济数据来分析经济趋势,例如 GDP 增长率、失业率、工业生产等指标。这些数据对于研究经济周期、做出政策预测和制定投资决策至关重要。

5.3. 金融数据可视化

开发者可以结合 AkShare 获取的金融数据与 Matplotlib 等可视化库,制作金融市场的图表展示。无论是股票价格的时间序列图、期货市场的波动性分析,还是全球股市的对比分析,AkShare 都能提供底层数据,帮助开发者生成直观的可视化结果。

import matplotlib.pyplot as plt

# 获取历史数据
stock_hist_df = ak.stock_zh_a_hist(symbol="000001", period="daily", start_date="20230101", end_date="20231001")

# 绘制价格走势
plt.plot(stock_hist_df['日期'], stock_hist_df['收盘'])
plt.title('平安银行股票价格走势')
plt.xlabel('日期')
plt.ylabel('收盘价')
plt.xticks(rotation=45)
plt.show()

这个例子展示了如何使用 AkShare 获取股票数据并进行可视化展示。

6 总结

Python AkShare 是一个功能强大且灵活的金融数据获取工具,适合量化交易、金融研究和经济数据分析。它提供了丰富的 API,涵盖了股票、期货、基金、外汇和宏观经济数据等多个领域,帮助开发者快速获取所需的数据进行分析和决策。无论是实时数据获取还是历史数据回测,AkShare 都为金融数据分析提供了强有力的支持。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

1 WINDPY接口说明 ................................................................................................. 1 1.1 WINDPY接口概述 ............................................................................................... 1 1.2 WINDPY接口安装 ............................................................................................... 2 1.2.1 WindPy对系统环境要求 ............................................................... 2 1.2.2 Python环境安装 .......................................................................... 2 1.2.3 正常WindPy接口安装 .................................................................. 3 1.2.4 特殊安装WindPy方式 .................................................................. 6 1.3 接口向导界面 ..................................................................................................... 6 1.4 WINDPY获取帮助途径 ....................................................................................... 7 1.4.1 本用户手册 .................................................................................... 7 1.4.2 量化交易群和R语言交流群 ........................................................... 7 1.5 WINDPY接口相关规范 ....................................................................................... 1 1.5.1 以下所有命令都有如下假设 ........................................................... 1 1.5.2 命令区分大小写,且“w.”不能省略 ............................................... 1 1.5.3 中文以及单字节码和双字节码的问题 ............................................. 1 1.5.4 品种、指标、参数等引号内的部分不区分大小写 ........................... 1 1.5.5 参数支持list输入 ...................................................................... 1 1.5.6 时间、日期支持Python语言的时间、日期格式 ........................... 2 1.5.7 参数中有缺省值的可以不用输入 .................................................... 2 1.5.8 可以带参数名输入 ......................................................................... 2 精于数据,一直进步 IV 1.5.9 Showblank参数 ........................................................................... 3 1.5.10 交易接口中Showfields参数................................................ 3 1.5.11 ErrorCode定义 .................................................................... 3 2 WIND PY插件命令说明 ....................................................................................... 1 2.1 FROM WINDPY IMPORT *:装载WINDPY包 ..................................................... 1 2.2 W.START:启动WINDPY ..................................................................................... 1 2.3 W.STOP:停止WINDPY ....................................................................................... 2 2.4 W.ISCONNECTED:判断是否已经登录 .............................................................. 2 2.5 W.CANCELREQUEST:取消订阅 .......................................................................... 2 2.6 W.WSD:获取历史序列数据 .............................................................................. 3 2.7 W.WSI:获取分钟数据 ...................................................................................... 3 2.8 W.WST:获取日内TICK级别数据 .................................................................... 4 2.9 W.WSS:获历史截面数据 .................................................................................. 5 2.10 W.WSQ:获取和订阅实时行情数据 ................................................................. 5 2.11 W.WSET:获取板块、指数等成分数据 ........................................................... 6 2.12 W.WEQS:获取条件选股结果 ............................................................................ 7 2.13 W.WPF:获取资产管理、组合管理数据 ......................................................... 7 2.14 交易相关函数 ..................................................................................................... 8 2.14.1 w.tlogon交易登录 ............................................................... 8 2.14.2 w.tlogout交易登出 ............................................................. 9 2.14.3 w.torder委托下单 ............................................................. 10 2.14.4 w.tcancel撤销委托 ........................................................... 11 精于数据,一直进步 V 2.14.5 w.tquery交易查询 ............................................................. 12 2.15 W.TDAYS, W.TDAYSOFFSET,W.TDAYSCOUNT:日期函数 ............................... 14 2.15.1 w.tdays:返回区间内的日期序列 ....................................... 14 2.15.2 w.tdaysoffset:返回某个偏移值对应的日期 ................... 14 2.15.3 w.tdayscount:返回某个区间内日期数量 ......................... 15 3 WINPY插件函数体说明........................................................................................ 1 3.1 日期序列(WSD)................................................................................................. 1 3.2 历史截面数据(WSS) ........................................................................................ 3 3.3 分钟序列(WSI)................................................................................................. 3 3.4 日内跳价(WST)................................................................................................. 4 3.5 实时数据(WSQ)................................................................................................. 5 3.6 数据集(WSET) ..............................................
03-09
### 关于 Python Akshare 的使用教程 #### 安装指南 为了顺利安装并使用 AKShare,建议遵循官方给出的最佳实践。当前 AKShare 支持的是 64 位操作系统以及 Python 3.8 或更高版本[^1]。对于 Python 的具体版本选择,推荐采用最新的稳定版如 Python 3.11.x (64 位)。 如果遇到环境配置难题,可以考虑通过安装最新版本的 Anaconda 来简化这一过程;Anaconda 是一个广泛使用的科学计算平台,它自带了许多常用的包管理工具和服务,能够有效减少依赖项冲突等问题的发生概率。另外,熟悉 Docker 技术的朋友也可以尝试利用 Docker 镜像来部署 AKShare 环境,这有助于创建更加隔离稳定的运行空间。 具体的命令行安装方式如下所示: ```bash pip install akshare --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 这段指令会从清华大学开源软件镜像站下载并更新至最新版本的 AKShare 软件包,从而提高国内用户的访问速度和成功率。 #### 基础操作实例 下面是一个简单的例子,展示了如何获取中国股市中的某个特定指数(比如上证系列指数)的实时行情数据: ```python import akshare as ak # 获取单次返回所有指定指数的实时行情数据 zh_index_spot_em_df = ak.stock_zh_index_spot_em(symbol="上证系列指数") print(zh_index_spot_em_df.head()) ``` 上述代码片段实现了对中国A股市场中“上证系列指数”的即时报价抓取功能,并打印出了前几条记录以便查看结果集的内容结构。 #### 文档资源链接 除了上述基础入门指导外,更详细的 API 参考手册和其他高级特性说明可以在项目主页或者 GitHub 上找到完整的文档资料[^2]。这些材料不仅包含了各个函数的具体参数解释及其应用场景描述,还提供了大量实用案例供开发者学习借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值