本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:使用 MoveNet Lightning 和 OpenCV 实现实时姿势检测
在本文中,我们将探讨如何使用 TensorFlow Lite 的 MoveNet Lightning 模型和 OpenCV 构建实时姿势检测系统。这个项目使我们能够使用网络摄像头检测身体关节并动态地可视化运动。
MoveNet Lightning 概述
MoveNet 是由 TensorFlow 开发的最先进的姿态估计模型,专为实时应用程序而设计。MoveNet 的 Lightning 变体针对速度和准确性进行了优化,使其适用于健身跟踪、运动分析等任务。
第 1 步:安装所需的库
在开始之前,请确保您已安装以下 Python 库:
pip install tensorflow numpy opencv-python matplotlib
这些库对于加载 MoveNet 模型、处理视频帧和可视化结果至关重要。
第 2 步:加载 MoveNet 模型
首先,我