基于阿里云OpenSearch快速构建检索增强生成(RAG)系统

c26b2ee1ab59f93f95e7f0c4dcd1a18a.gif

随着生成式AI技术“火爆出圈”,预示着人工智能未来发展趋势的同时,也为我国人工智能市场注入源源不断的活力,更多企业关注如何将“超级工具”应用到实际业务中去。

生成式人工智能技术在通用任务上表现优秀,但面对垂直业务领域,还无法给出精确的回答。如何在垂直领域针对特定知识构建企业专属问答并且确保生成的内容可控,是垂直领域服务的关键。

检索增强生成(Retrieval-augmented Generation,RAG),是当下最热门的大模型前沿技术之一。如果将“微调(finetune)”理解成大模型内化吸收知识的过程,那么RAG就相当于给大模型装上了“知识外挂”,基础大模型不用再训练即可随时调用特定领域知识。

阿里云智能开放搜索OpenSearch支持3种解决方案构建RAG系统,可快速在业务场景中进行实践及应用。

本文将介绍“OpenSearch LLM智能问答版”、“OpenSearch向量检索版+大模型”,以及“阿里开源搜索引擎Havenask+大模型”的实践方案,如何帮助企业快速搭建RAG系统。

9c3eacf3c9139218f5a0e6e9bf945f51.png

阿里云OpenSearch LLM智能问答版——一站式端到端RAG系统

核心能力:两分钟、三步搭建企业级RAG系统

Step1:上传业务数据

通过控制台/API,快速上传业务数据

6d1c4a2b4cfbf8fdfc57421ec30f0aa8.png

Step2:问答参数调整

3ec25d07456c451a2a3f2274d539a2b6.png

调整语言、检索、模型、Prompt等参数,测试RAG效果

Step3:专属模型定制(可选)

基于个性化数据,定制企业专属LLM,进一步提升RAG准确率并降低幻觉率

073755970bcc841c562dc93cc1bd994e.png

产品优势:

  • 一站式端到端RAG服务,简单易用:内置非结构化数据处理、向量模型、文本&向量检索、LLM的一站式开箱即用RAG方案,用户只需上传业务数据即可搭建RAG系统

  • 精细化的RAG处理,效果过关:支持多样性的数据处理能力,基于多年沉淀的中文检索能力,配合数百个客户打磨的实战大模型,保障更优RAG效果

  • 低成本、灵活计费方式:支持按量付费/GPU租用模式,每天最低5元即可实现RAG服务,大幅降低企业开发、运维、人力成本

af6b18d221c4fe7f1549623caa430dcb.png

典型用户:

  • 应用场景:企业知识库、智能客服、电商导购、课程助手、搜索场景升级等

  • 开发周期短,期望在短时间内快速构建RAG系统

  • 企业内部无算法团队或有少量算法团队,期望结合自身业务构建RAG相关应用

3a48e47ac71a15bb1a201d4d9fec76b2.png

阿里云OpenSearch向量检索版+大模型——PaaS化组件能力

核心能力:

对业务数据进行预处理,构建并存储向量索引

e81ac97b550a34a15fd022b0c0b28743.png

接收到用户请求后,对已有知识库进行向量检索,找到相关的信息,并作为Prompt输入到LLM中

30bb67bd6f7bea3cfab2e1b52f1a2b38.png

产品优势:

  • 高性能向量检索服务:支持千亿数据毫秒级响应,实时数据更新秒级可见;向量检索性能优于开源向量搜索引擎数倍,在高QPS场景下召回率明显优于其他向量搜索引擎

  • 更灵活的方案选型:灵活适配不同大模型服务,可根据自身业务情况按需对接大模型    

  • 低成本、快速搭建向量检索服务与RAG系统:通过数据压缩、精细索引结构设计、非全内存加载等方案,优化使用成本、降低所需的资源消耗

典型用户:

  • 应用场景:企业知识库、智能客服、技术文档、课程助手等

  • 已有成熟的大模型服务,但需要向量存储库和向量检索为大模型提供知识输入

  • 企业内部有算法团队,期望结合自身业务构建RAG相关应用

c6351b85c29044a2ef63696666588486.png

阿里开源搜索引擎Havenask+大模型——开源方案

核心能力:

使用阿里巴巴自研的开源大规模高性能检索引擎Havenask进行文本+向量检索服务

基于Havenask-LLM工具,可将Havenask强大的向量检索能力与大模型结合,基于开源模型构建RAG系统

e8100bd4e816e9c967b52ef510f1c463.png

产品优势:

  • 丰富积累的高性能检索引擎:支持单机10亿,超大规模高性能向量检索;千亿级数据实时检索,百万QPS查询;保障高并发情况下的性能和准确性

  • 全开源、可定制、业务调整空间大:向量检索、大模型均使用开源方案,可使用丰富灵活的部署方式,业务适配性更高,发挥空间大

典型用户:

  • 应用场景:企业知识库、智能客服、技术文档、课程助手等

  • 业务数据相对敏感,需要私有化部署

  • 期望使用更为灵活的开源技术栈

  • 企业内部有资源丰富的工程、算法团队,期望结合自身业务构建RAG相关应用

e6263358b52875a37c61c1b91dea377a.png

方案对比与选型建议

方案对比:

功能对比

LLM智能问答版

向量检索版

Havenask

切片服务



向量模型


向量检索

LLM



是否开源



选型建议:

用户类型

选型建议

期望一站式快速搭建RAG系统的用户

OpenSearch-LLM智能问答版

已有明确大模型选型方案,期望搭建向量检索知识库的客户

OpenSearch-向量检索版

期望使用开源方案自行部署向量检索的用户

Havenask

<think>好的,我现在需要帮助用户解答关于企业级知识库构建的技术、方案和工具的问题。首先,用户已经提供了几个引用,我需要仔细看看这些引用内容,看看有没有相关的信息可以利用。 引用[1]提到企业可能需要自行构建知识库软件,并提到了自定义知识库软件的概念。引用[2]介绍了Casibase,一个开源的AI知识库和RAG系统,应该和技术方案有关。引用[3]强调AI知识库的自我学习和分析能力,引用[4]则提到了使用LangChain和类似工具构建本地知识库的流程,特别是langchain-ChatGLM和它的升级版。这些引用应该能帮助我整理出构建企业级知识库的关键点。 接下来,我需要按照用户的要求,结构清晰地分步骤回答。可能需要分为技术架构、构建方案、工具选型、实施步骤、优化策略以及案例参考这几个部分。每个部分需要结合引用中的信息,比如Casibase、RAG、LangChain等。 另外,用户要求生成相关问题,我需要确保问题涵盖技术、工具、架构、挑战和应用场景等方面,并且问题之间有逻辑连贯性。同时,回答中需要自然添加引用标识,比如在提到Casibase时加上[^2],提到LangChain时加上[^4]。 还要注意使用中文,LaTeX格式正确,行内公式用$,独立公式用$$,但用户的问题中没有涉及太多数学公式,可能这部分不需要太多关注。不过如果有技术术语需要公式的话,比如算法名称,可能不需要,这里可能主要涉及技术组件和架构。 需要确保每个部分的信息准确,引用正确。比如在技术架构部分,需要提到知识抽取、存储、检索、智能应用和权限管理,这些都是构建知识库的关键模块。工具选型部分要区分开源和商业工具,如Casibase、LangChain、Elasticsearch、Milvus等,这些都是引用中提到的或相关的工具。 在实施步骤里,需求分析、数据准备、系统搭建、测试优化、部署维护这些步骤是标准流程,需要结合引用中的案例,比如Casibase的架构和LangChain的应用流程。优化策略部分可能需要提到RAG技术、多模态处理、自动化更新等,这些都是引用中提到的内容,特别是引用[2]和[4]。 最后,案例参考部分需要引用具体的例子,比如Casibase和langchain-Chatchat,这些来自引用[2]和[4]。然后生成的相关问题要覆盖构建中的技术难点、工具比较、RAG应用、安全权限、AI技术的影响等,确保问题全面且有针对性。 现在需要检查是否有遗漏的信息,比如引用[3]提到的AI知识库的自我学习能力,应该在智能应用或优化策略部分提到。同时,引用[1]中的自定义知识库软件可能涉及工具选型中的自研方案。各部分需要平衡,确保覆盖所有引用内容,并正确标注来源。</think>### 企业级知识库构建技术方案与工具详解 #### 一、核心技术架构 1. **知识抽取与处理** - 支持多格式文档(PDF/Word/Excel)解析,结合NLP技术实现实体识别和语义标注[^4] - 示例公式:文本向量化过程可表示为$$ \mathbf{v} = f_{\text{encoder}}(\text{document}) $$,其中$f_{\text{encoder}}$为BERT等编码器 2. **知识存储与检索** - 采用混合存储架构:结构化数据(MySQL)+非结构化数据(Elasticsearch)+向量数据(Milvus/Pinecone)[^2] - 支持相似度检索:$ \text{sim}(q,d) = \cos(\mathbf{v}_q, \mathbf{v}_d) $ 3. **智能应用层** - 集成RAG检索增强生成)框架,结合LLM实现智能问答[^4] - 架构示例: ``` 用户提问 → 语义检索 → 知识增强 → LLM生成 → 反馈优化 ``` #### 二、典型构建方案 | 阶段 | 开源方案 | 商业方案 | |-------------|----------------------------|-----------------------| | 基础框架 | Casibase、LangChain[^4] | Microsoft Azure认知搜索 | | 向量数据库 | Milvus、FAISS | Pinecone | | AI引擎 | OpenAI API、Llama2 | Google Vertex AI | #### 三、工具选型建议 1. **开源工具链** - Casibase:提供完整的RAG实现,支持知识库版本控制[^2] - LangChain-ChatGLM:中文场景优化,支持本地化部署[^4] - 技术栈示例: ``` Python + FastAPI + Elasticsearch + Transformer模型 ``` 2. **商业解决方案** - AWS Kendra:全托管企业搜索服务 - 阿里云智能知识库:集成达摩院NLP能力 #### 四、实施步骤 1. **需求分析** - 明确知识类型(技术文档/客户案例/产品资料)[^1] - 确定访问控制粒度(部门/角色/项目) 2. **数据准备** - 使用OCR+PDF解析工具处理历史文档 - 构建领域词表提升识别准确率 3. **系统搭建** - 参考Casibase的模块化架构: ``` Web服务层 → 业务逻辑层 → 数据存储层 → AI引擎层 ``` 4. **测试优化** - 采用BLEU-4指标评估问答质量:$ BLEU = BP \cdot \exp(\sum_{n=1}^4 w_n \log p_n) $ - 进行压力测试确保并发性能 #### 五、优化策略 1. **混合检索策略** - 结合关键词检索(BM25算法)与语义检索(ANN算法) - 权重计算公式:$ \text{score} = \alpha \cdot \text{BM25} + (1-\alpha) \cdot \text{Semantic} $ 2. **持续学习机制** - 实现知识库的自动化更新流程[^3] - 设计反馈闭环:用户纠错 → 人工审核 → 模型微调 #### 六、案例参考 1. **Casibase应用场景** - 客户服务:自动生成工单解决方案 - 研发支持:代码知识片段检索 2. **LangChain升级方案** - 某企业采用langchain-Chatchat实现多文档问答,处理效率提升7倍
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值