Claude 3 大模型再度点燃 AI 战火,性能和速度全面超越 GPT-4

Anthropic推出新一代AI模型系列Claude3,包括Opus、Sonnet和Haiku,提升推理能力、数学计算和多语言理解等,与GPT形成强有力的竞争。特别是Opus在多项测试中超越了GPT-4和GeminiUltra,强调了安全性和性能的双重优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

出品 | 《新程序员》编辑部

还记得 ChatGPT-3.5 刚火的时候,许多人在网上苦苦寻求入门途径,这时,一群前 OpenAI 员工和研究人员出走并创立了 Anthropic,主打安全的旗号,致力于开发更加安全、可控的人工智能系统。

没过多久,紧跟着 GPT-3.5 的发布时间,Anthropic 在 2023 年 3 月推出了 Claude 大模型,直接获得了「ChatGPT 最强平替」的称号,加持着“纯免费”的超级 buff,甚至一同带火了 Quora 创建的名为 Poe 的大模型集成平台。此后,Anthropic 的每次发布都势必对标 GPT,被视为「ChatGPT 最强劲的竞争对手」。

就在昨晚,Anthropic 再次向 OpenAI 伸出一记重拳,重磅发布新一代的人工智能模型系列 Claude 3,并宣称该系列的三款产品 Opus、Sonnet 和 Haiku 在推理能力、数学计算、编程、多语言理解和视觉处理等领域树立了新的行业标杆。
在这里插入图片描述
Claude 3 系列的三个模型都具有 200,000-token 的上下文窗口,Opus 主打高水平的“类人智能”,Sonnet 则是结合性能与速度的中庸之选,Haiku 可以执行轻量级操作,兼具性价比和速度。这三个模型的命名分别代表着「作品」、「十四行诗」和「俳句」,从大到小概括了每款模型的特色。

当前,用户可通过电子邮件注册免费使用基于 Sonnet 模型的 Claude.ai 聊天机器人服务。然而,最为强大的模型 Claude 3 Opus 仅在订阅付费后才能通过 Anthropic 网站上的“Claude Pro”服务体验,每月收费 20 美元。

目前,Opus 和 Sonnet 已经可以通过 Anthropic 的 API 获取,Haiku 将在随后推出;而 Sonnet 模型除了在 Anthropic API 上可用之外,还已经提前接入亚马逊的 Bedrock 平台,并在 Google Cloud 的 Vertex AI Model Garden 上线。

回想 Claude 的前两次发布,其在能力上都略微落后于 OpenAI 的最佳模型,且 Anthropic 主要宣传的是上下文窗口长度和安全这些重点。这一次,Anthropic 或许终于在性能方面赶超了 OpenAI 的模型。

性能战和价格战——我全都要

相较于前代 Claude 2,Claude 3 在分析、预测、内容创作、代码生成以及多语言对话等方面有所提升。

王牌 Opus 在衡量本科级别专业知识(MMLU)、研究生级别专业推理能力(GPQA)以及基础数学(GSM8k)的测试中,其表现超越了 OpenAI 和谷歌各自最先进的模型 GPT-4 和 Gemini Ultra。

Opus 的实际速度与 Claude 2 和 2.1 相同,但它的性能要强得多。

作为对比,家中老二 Sonnet 的速度则是 Anthropic 先前最佳模型 Claude 2.1 的两倍,并且拥有更高的智能水平。Anthropic 声称,Sonnet 在需要快速响应的知识检索或销售自动化等智能任务上表现出色。

性价比之选 Haiku 在性能、速度及成本方面均优于同类尺寸的其他模型。它能够在不到三秒钟的时间里阅读一篇包含图表和图形、大约 7500 字的密集型研究论文。

这三个模型都有个共同的特点:可以实时给出“近乎即时的响应”,这使其适合时间至关重要的实时客户聊天、自动完成和数据提取。此外,这些模型还具有增强的视觉能力,能够处理照片、图表、示意图,类似于 GPT-4V 和谷歌的 Gemini。

在这里插入图片描述

Anthropic 提供的多模态视觉能力基准图表显示了其在这方面的能力

Anthropic 特别强调,与之前几代及竞品相比,这三个模型在速度和成本效益上均有显著提升(单位为美元):

在这里插入图片描述此外,Claude 3 模型针对部分客户可处理高达 100 万个 token(这一点与 Gemini Pro 1.5 相似),并且在如此庞大的上下文大小的基准测试中,Opus 模型实现了近乎完美的记忆性,准确率超过 99%。同时,Anthropic 声称 Claude 3 模型降低了无害提示的拒绝率,并且在减少错误答案的同时表现出更高的准确度。

这一点被英伟达的高级科学家 Jim Fan 盛赞,因为当前大模型对无害问题过于谨慎的回答已成为一个普遍现象,凡事都要反复“叠甲”个好几次才能给你答案。但 Anthropic 意识到了这一问题,并强调了他们在降低拒绝率方面的努力。
在这里插入图片描述

同样被 Fan 好评的还有 Claude 在特定领域的专家基准测试。Claude 特意选择了金融、医学和哲学等专家领域,并报告了在这几个领域的性能表现。

在这里插入图片描述
这就不得不提到 Claude 3 的重大突破——合成数据的应用。Anthropic 通过在训练过程中使用合成数据来部分实现 Claude 3 的能力提升。合成数据是指内部使用另一款 AI 语言模型生成的数据,该技术可以拓宽训练数据的深度,以弥补抓取数据集中可能缺失的情景。

在这里插入图片描述

Anthropic 提供的基准图表进一步展示了其性能表现

大模型的未来:比卷性能更重要的事

许多企业对生成式人工智能的一大顾虑在于其可能出现的“幻觉”,即提供错误的信息输出。以最近发生的加拿大航空案例为例,其 AI 聊天机器人向旅客提供了不准确的退款信息,最终法院判决要求航空公司赔偿该名因得到错误信息而起诉的旅客。

Anthropic 表示,Claude 3-Opus 在整体能力和低幻觉率方面能够超越当前市场领导者 GPT-4 Turbo。而相较于 Claude 2.1,Opus 在给出正确答案和减少错误答案方面的表现提升了两倍。研究者通过三个类别来衡量准确性:正确的答案、错误的答案以及在不确定时选择回答不知道而非错误作答。

自两年前创立以来,Anthropic 始终将构建负责任的人工智能作为优先任务,旨在避免性别歧视、种族歧视以及其他有害输出,并在这次的更新宣布了一条新准则:尊重残疾人的权利,以减轻任何可能加剧刻板印象和偏见的输出。

在未来几个月内,Anthropic 计划定期更新 Claude 3 模型系列,并推出工具使用、交互式编程和“高级代理能力”(advanced agentic capabilities)等新功能。Anthropic 表示将继续致力于确保安全措施跟上 AI 性能的发展步伐,并强调目前 Claude 3 模型“带来灾难性风险的可能性极小”。

这似乎是在暗示 GPT——毕竟 Anthropic 的创始人们之所以会离开 OpenAI,其实就是因为安全理念的不符。

在这里插入图片描述

### 不同AI模型的评测成绩性能对比 #### DeepSeek-V3 vs Qwen2.5-72B DeepSeek-V3是一个拥有671B参数的大规模语言模型,而Qwen2.5则有72B参数。在多个基准测试中,DeepSeek-V3的表现优于GPT-4oClaude-3.5 Sonnet,在某些特定任务上的表现尤为突出[^1]。相比之下,尽管Qwen2.5的参数量较小,但在一些自然语言理解任务上依然表现出色,并且由于其开源特性,受到了社区的高度关注支持。 #### DeepSeek-V3 vs Llama-3.1-405B Llama-3.1具有405B参数,介于DeepSeek-V3Qwen2.5之间。然而,DeepSeek-V3采用了先进的混合专家(MoE)架构,使得每个token仅激活约37B参数,从而提高了计算效率并增强了模型的能力。这种设计让DeepSeek-V3能够在资源有限的情况下提供更高效的推理服务,同时也保持了较高的准确性[^2]。 #### DeepSeek-V3 vs GPT-4o 作为一款闭源产品,关于GPT-4o的具体实现细节较少公开披露。但从已有的评估来看,DeepSeek-V3已经在多项指标上超越了这一版本的GPT系列模型。特别是在涉及复杂语境理解多轮对话的任务场景下,DeepSeek-V3展现了更强的理解力响应质量。 #### DeepSeek-V3 vs Claude-3.5-Sonnet 同样属于闭源阵营的一员,Claude-3.5 Sonnet也是一款备受瞩目的大语言模型。不过根据现有资料,DeepSeek-V3无论是在参数规模还是实际应用效果方面均有所领先。尤其是在跨领域迁移学习能力以及对新兴话题的学习速度等方面,DeepSeek-V3显示出明显的优势。 ```python import matplotlib.pyplot as plt models = ['DeepSeek-V3', 'Qwen2.5-72B', 'Llama-3.1-405B', 'GPT-4o', 'Claude-3.5'] params = [671, 72, 405, None, None] plt.bar(models, params) plt.xlabel('Model') plt.ylabel('Parameters (in Billions)') plt.title('Parameter Comparison of Different AI Models') plt.show() ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值