三相永磁同步电机之二:空间矢量

       1 概述

        在电机中,可以将在空间按正弦分布的物理量表示为空间矢量。空间矢量示意图如下图所示:

        任何一个空间矢量均可以表示为

\vec{r} = Re^{j\theta }

        R表示空间矢量的模,\theta是空间矢量轴线与参考轴Re间的空间电角度,为空间矢量的相位。根据欧拉公式还可以表示为

\vec{r}=Rcos\theta +jRsin\theta

        2 定、转子磁动势矢量

                绕组产生的磁动势将全部消耗在两个气隙内,所以单边气隙只消耗一半的磁动势

                A相绕组产生的矩形磁动势波及其基波分量如下图所示

                A相绕组通电后将在气隙中将形成一个矩形分布的磁动势波,经过傅里叶分解(详情参考电机学,奇谐函数)可得到其基波磁动势波的幅值为:

F_{A}(t)=\frac{4}{\pi }\cdot \frac{1}{2}N_{s}i_{A}(t)

                使用空间矢量表示该基波磁动势得:

\vec{f_{A}}=F_{A}e^{j0^{\circ}}

其轴向与A轴重合,同样的也可以得到B相和C相的基波磁动势空间矢量表达:
\vec{f_{B}}=F_{B}e^{j120^{\circ}}

\vec{f_{C}}=F_{C}e^{j240^{\circ}}

                加入节距及分布绕组,使其基波含量增加,引入基波绕组系数 k_{ws1}

                注意:

                1.相绕组的磁动势波的波形决定于空间因素(绕组分布形式),与电流无关

                2.空间矢量的幅值和方向在空间因素确定后,仅取决于定子电流大小和方向

                3.空间矢量的模描述了该物理量随时间的变化(幅值和方向),相位描述了其空间分布的初相位(实际分布在整个圆周上)

                将三相磁动势空间矢量合成:

\vec{f_{s}} = \vec{f_{A}} + \vec{f_{B}} + \vec{f_{C}} \newline =F_{A}(t)e^{j0^{\circ}} + F_{B}(t)e^{j120^{\circ}} + F_{C}(t)e^{j240^{\circ}} \newline =a^{0}F_{A}(t) + aF_{B}(t) + a^{2}F_{C}(t)

                a^{0},a,a^{2}为空间复平面内的单位矢量a^{0}=e^{j0^{\circ}},a=e^{j120^{\circ}},a^{2}=e^{j240^{\circ}},称为空间算子,在正弦稳态下,得到三相合成磁动势为:

\vec{f_{s}}=\frac{3}{2}F_{1}e^{j(\omega_{s} t+\phi_{1})}

                任意电流波形的磁动势矢量:

\vec{f_{s}} = \frac{4}{\pi }\frac{1}{2}N_{s}k_{ws1}[a^{0}i_{A}(t) + ai_{B}(t) + a^{2}i_{C}(t)]

                运动轨迹为圆形,旋转的电角速度=电源角频率,当时间参考轴与复平面实轴重合时,电流与磁动势空间矢量的初相位相同,并且同步旋转。(当电流不是正弦电流时,磁动势空间矢量不再是圆形的轨迹)

        3 定、转子电流矢量

                空间矢量所在的复平面,可以视为电机的两相静止坐标系,所以要使用一个单轴线圈代替三相绕组产生的定、转子电流矢量,则需要通过Clark的恒功率变换实现,所以得到定子电流空间矢量(因为电流矢量与磁动势矢量方向一致,并且呈一定的比例关系,所以赋予了电流空间意义)为:

                \vec{i_{s}} = \sqrt{\frac{2}{3}}(i_{A} + ai_{B} + a^{2}i_{C})

                带入磁动势矢量公式得:

\vec{f_{s}} = \frac{4}{\pi }\frac{1}{2}N_{s}k_{ws1}[a^{0}i_{A}(t) + ai_{B}(t) + a^{2}i_{C}(t)] \newline =\frac{4}{\pi }\frac{1}{2}\sqrt{\frac{3}{2}}N_{s}k_{ws1}\vec{i_{s}}

                转子电流矢量公式:

\vec{i_{r}} = \sqrt{\frac{2}{3}}(i_{a} + ai_{b} + a^{2}i_{c})e^{j \theta_{r}} \newline =\sqrt{\frac{2}{3}}(i_{a}^{'} + ai_{b}^{'} + a^{2}i_{c}^{'})

                i_{a}^{'},i_{b}^{'},i_{c}^{'} 为等效的静止转子中的电流,最终实现了用两个旋转的定、转子单轴线圈代替了三相绕组。运用空间矢量理论可以建立起三相同步电动机与直流电动机之间的联系,为交流电动机的矢量控制提供了有效途径。

        4 定子电压矢量

                只有将外加相电压与相绕组所产生的磁动势和磁场联系起来时,电压才被赋予了空间含义。表达式可以参考定子电流矢量。(与开关电压矢量有关

        5 定、转子磁链矢量

                运用空间矢量分析的前提是电机气隙内磁场是按正弦分布的(B磁感应强度用于描述磁场的空间分布,但是只描述了一个点,所以B不能用作空间矢量)。A相绕组单极磁通为(具体计算详见电机学):

\phi_{mA} = \frac{2}{\pi }B_{gAmax}l_{s}\tau

                当电机结构确定后,单极磁通的大小与正弦磁场的幅值成正比,可以使用磁通表示整个正弦分布磁场及其对外的作用。磁通只有与正弦磁场的空间分布及其状态联系在一起时,才被赋予空间矢量的含义

                得出A相绕组的励磁磁链:

\psi_{mA}=N_{s}k_{ws1} \phi_{mA}

                引入磁链矢量意义在于可以加入绕组有效匝数的因素。同样因为

\psi_{mA}=L_{m1}i_{A}

                由于电流可定义为空间矢量,自然磁链也可以定义为空间矢量。将定子全磁链矢量定义为:

\vec{\psi_{s}} = \sqrt{\frac{2}{3}}(\psi _{A} + a\psi _{B} + a^{2}\psi _{C})

                全磁链不仅包含了相绕组的自感磁链,还包括其他绕组对其产生的互感磁链。转子磁链矢量可参考转子电流矢量形式。由定、转子自感和互感分析(之后再开一章讲,前提是定、转子励磁电感相等)得磁链矢量方程为:

\left\{\begin{matrix} \vec{\psi_{s}}=L_{s}\vec{i_{s}} + L_{m}\vec{i_{r}}\\ \vec{\psi_{r}}=L_{m}\vec{i_{s}} + L_{r}\vec{i_{r}} \end{matrix}\right.

                气隙磁场与定、转子励磁磁场的合成磁场相对应:

\psi_{g}=L_{m}(\vec{i_{s}} + \vec{i_{r}})

                定、转子漏磁场虽然不能作为机电能量转换的媒介,与电磁转矩生成无关,但对电动机的运行特性有重要影响,特别是转子漏磁场在电动机动态过程中起着重要作用。

                同样的也可以将感应电动势作为空间矢量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值