【论文学习】半马尔科夫随机跳变系统的随机稳定性与鲁棒镇定(系统建模)

注:因本人只需学习半马尔科夫建模过程,故略过论文后续稳定性证明和控制器设计。

一、论文出处

Ji Huang and Yang Shi,Stochastic stability and robust stabilization of semi-Markov
jump linear systems,INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2013; 23:2028–2043

DOI: 10.1002/rnc.2862

二、简写说明

1.马尔可夫跳变线性系统:Markov jump linear systems (MJLSs)。

2.半马尔可夫跳跃线性系统:semi-Markov jump linear system(S-MJLS)。

三、创新点

1.建立了一类不确定S-MJLS随机稳定性的充分条件。

2.提出一种新的划分方案,通过划分转移率的范围(从下界到上界),有效地降低了稳定性条件的保守性。

3.针对具有范数有界不确定性的S-MJLS,提出了一种鲁棒状态反馈控制器设计方法。

四、引入

一般来说,MJLS属于跳跃线性系统。在跳跃线性系统中,两个连续跳跃之间的持续时间h被称为sojourn-time,它通常是一个随机变量。在连续时间跳跃线性系统中,初始时间h是由连续概率分布F控制的随机变量。例如,F是连续时间MJLS中的指数分布。取决于F,转换速率\lambda^{_{ij}}(h)是系统从模式i跳到模式j的速度/速率。

此处的转换率也可以被叫做故障率/危险率。(可用于故障建模)

如果应用MJLS来描述感兴趣的随机系统,则转移率应假定为常数。(局限)MJLS是S-MJLS的一种特殊情况,S-MJLS可以用来建模和表征更广泛的实际随机系统。S-MJLS的转换速率允许是时变的,更符合一般情况。

五、问题建模

考虑以下具有范数有界不确定性的非强制连续时间S-MJLS:

其中,r(t),t>0就是在有限空间s={1,2...n}中取值的连续时间半马尔科夫过程,x(t)是状态变量。A(r(t))是取决于r(t)维数的系统矩阵,EF是已知实常数矩阵。\delta (t)是具有勒贝格可测元素的未知实矩阵函数,满足\delta (t)\delta (t)^{\mathbf{T}}\leqslant I

注:关于勒贝格可测请参考本站鬼道2022《Lebesgue可测函数》

半马尔科夫的演化过程由以下概率转移控制:

\lambda^{_{ij}}(h)t时刻i\neq j时模式ij的转移速率。\lambda^{_{ii}}(h)=-\sum _{j=1,j\neq i}^{N}\lambda^{_{ij}}(h)

这里可以看出该矩阵的性质与拉普拉斯矩阵相似,行和为0,对角线元素为该行其余元素相加取反,也就能理解为什么上面的概率转移在对角线上是要用1+了。

注:转移速率只与sojourn-time h有关。每当系统跳变,h就被设置为0。

后续随缘更新随机稳定性的证明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值