注:因本人只需学习半马尔科夫建模过程,故略过论文后续稳定性证明和控制器设计。
一、论文出处
Ji Huang and Yang Shi,Stochastic stability and robust stabilization of semi-Markov
jump linear systems,INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2013; 23:2028–2043
DOI: 10.1002/rnc.2862
二、简写说明
1.马尔可夫跳变线性系统:Markov jump linear systems (MJLSs)。
2.半马尔可夫跳跃线性系统:semi-Markov jump linear system(S-MJLS)。
三、创新点
1.建立了一类不确定S-MJLS随机稳定性的充分条件。
2.提出一种新的划分方案,通过划分转移率的范围(从下界到上界),有效地降低了稳定性条件的保守性。
3.针对具有范数有界不确定性的S-MJLS,提出了一种鲁棒状态反馈控制器设计方法。
四、引入
一般来说,MJLS属于跳跃线性系统。在跳跃线性系统中,两个连续跳跃之间的持续时间h被称为sojourn-time,它通常是一个随机变量。在连续时间跳跃线性系统中,初始时间是由连续概率分布
控制的随机变量。例如,
是连续时间MJLS中的指数分布。取决于
,转换速率
是系统从模式
跳到模式
的速度/速率。
此处的转换率也可以被叫做故障率/危险率。(可用于故障建模)
如果应用MJLS来描述感兴趣的随机系统,则转移率应假定为常数。(局限)MJLS是S-MJLS的一种特殊情况,S-MJLS可以用来建模和表征更广泛的实际随机系统。S-MJLS的转换速率允许是时变的,更符合一般情况。
五、问题建模
考虑以下具有范数有界不确定性的非强制连续时间S-MJLS:
其中,就是在有限空间
中取值的连续时间半马尔科夫过程,
是状态变量。
是取决于
维数的系统矩阵,
和
是已知实常数矩阵。
是具有勒贝格可测元素的未知实矩阵函数,满足
。
注:关于勒贝格可测请参考本站鬼道2022《Lebesgue可测函数》
半马尔科夫的演化过程由以下概率转移控制:
是
时刻
时模式
到
的转移速率。
。
这里可以看出该矩阵的性质与拉普拉斯矩阵相似,行和为0,对角线元素为该行其余元素相加取反,也就能理解为什么上面的概率转移在对角线上是要用1+了。
注:转移速率只与sojourn-time 有关。每当系统跳变,
就被设置为0。
后续随缘更新随机稳定性的证明。