【论文学习】半马尔科夫随机跳变系统的随机稳定性与鲁棒镇定(随机稳定性分析)

一、论文出处

Ji Huang and Yang Shi,Stochastic stability and robust stabilization of semi-Markov
jump linear systems,INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2013; 23:2028–2043

DOI: 10.1002/rnc.2862

二、简写说明

1.马尔可夫跳变线性系统:Markov jump linear systems (MJLSs)。

2.半马尔可夫跳跃线性系统:semi-Markov jump linear system(S-MJLS)。


三、随机稳定性证明

首先给出一个证明S-MJLS的鲁棒随机稳定性的引理:

F^{\boldsymbol{\mathbf{T}}}F\leq I,存在常数矩阵HE,和标量\varepsilon > 0,使以下不等式成立:接着抛出自己的定理:

若存在一组矩阵P(i)> 0i\in S,和一组正标量\varepsilon_{A,i}> 0,i\in S使下列容许不等式成立:

证明过程如下:选取二次型Lyapunov函数:

V(x(t),r(t))=x^{\mathbf{T}}(t)P(r(t))x(t).

其中,P(r(t))为正对称矩阵,无穷小生成元(即无穷小算子,详见随机过程理论)\tilde{A}被视为李雅普诺夫函数沿半马尔科夫过程在时间t轨迹的导数(此处原文给出了出处,详见引文)。首先导出无穷小生成元,根据其定义,有:

此处的\bigtriangleup是小正数,接着,在r(t)=1的条件下应用全概率公式及条件期望公式,将以上公式转化为:

上式是按t+\Delta时刻状态与t的同异划分成前后两部分,使用全概率公式展开。接着文章使用条件概率公式进一步展开:这一步很好理解,不再赘述。

对于MJLSs的无记忆特性(理解为指数分布),有以下变换:

\mathrm{Pr}\left \{ r(t+\Delta ) =j,r(t)=i\right \}=\mathrm{Pr}\left \{ r(\Delta ) =j,r(0)=i\right \}.

即:系统变换仅与时间增量有关,与所处时刻无关。

但对于S-MJLSs,该式不成立,因为转移率是时变的,是取决于h的函数。这里定义系统从状态i跳跃到状态j的概率为q_{ij},当系统保持在模式i时,sojourn-time h的累积分布函数(CDF)为G_{i},从最后一次跳跃开始,停留在模式i的时间为h,重新改写(6)式,得到如下结果:

这里将上边的条件概率展开成两式相乘,即状态跳变的概率乘以两不同时刻CDF的差值(再停留一个\Delta时间的概率),CDF是概率直观的表达。在r(t)时刻处于状态i的概率可以理解成停留时间大于等于h的概率,也就是1-G_{i}(h).

利用一阶近似(泰勒一阶展开),将x(t+\Delta )写为

则可将无穷小生成元写为

其中,Q(i,h,t)由下式表示:

移项,改写为这里主要是为了凑出\lim_{\Delta \to 0}\frac{G_{i}(h+\Delta )-G_{i}(h)}{(1-G_{i}(h))\Delta }\lim_{\Delta \to 0}\frac{G_{i}(h+\Delta )-G_{i}(h)}{1-G_{i}(h) }这两项。

根据分布函数的性质,有:先看后面一项,分子是逗留时间为h+\Deltah的概率之差,由于\Delta太小,分子是无穷小,后一项必然为0。前一项相当于分布函数求导后再与分母的有限量作比值,将该项定义为\mathit{\lambda }_{i}(h)

据此将Q(i,h,t)化简为:

在这里引出\mathit{\lambda }_{ij}(h)\mathit{\lambda }_{ii}(h)的数学定义:

这里就是转移概率矩阵中各元素的定义了。接着化简:将划红线部分用引理1进行放缩,有Q(i,h,t)以放缩项换元,重新定义显然,有Q(i,h,t)\leq \tilde{Q}(i,h)

使用舒尔补[此处为矩阵理论相关知识]将所需证明的\tilde{Q}(i,h)< 0转化为以下矩阵形式:

其中,J_{i}(h)由以下表示:

因此,为了证明以下不等式链成立:

还需证明

存在。将\tilde{Q}(i,h)拆成以下两项:

其中,显然,这两项的\lambda _{\mathrm{max}}均存在,因为\lambda _{ij}(h)正定且有上界:\bar{\lambda _{ij}}.因此,以下两个不等式成立:

表示都为半负定矩阵。所以以下不等式成立:

这就证明了不等式链的正确性。最后,使用广义Dynkin公式,有

移项,即可得到

由(4)中定义的条件,

即得下式对任意t> 0均成立:

当有界,则以上不等式左边被右边的正常数所限定。根据最初对S-MJLSs系统随机稳定性的定义,系统是随机稳定的,完成了证明。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值