一、论文出处
Ji Huang and Yang Shi,Stochastic stability and robust stabilization of semi-Markov
jump linear systems,INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2013; 23:2028–2043
DOI: 10.1002/rnc.2862
二、简写说明
1.马尔可夫跳变线性系统:Markov jump linear systems (MJLSs)。
2.半马尔可夫跳跃线性系统:semi-Markov jump linear system(S-MJLS)。
三、随机稳定性证明
首先给出一个证明S-MJLS的鲁棒随机稳定性的引理:
若,存在常数矩阵
和
,和标量
,使以下不等式成立:
接着抛出自己的定理:
若存在一组矩阵,
,和一组正标量
,
使下列容许不等式成立:
证明过程如下:选取二次型Lyapunov函数:
.
其中,为正对称矩阵,无穷小生成元(即无穷小算子,详见随机过程理论)
被视为李雅普诺夫函数沿半马尔科夫过程在时间
轨迹的导数(此处原文给出了出处,详见引文)。首先导出无穷小生成元,根据其定义,有:
此处的是小正数,接着,在
的条件下应用全概率公式及条件期望公式,将以上公式转化为:
上式是按时刻状态与
的同异划分成前后两部分,使用全概率公式展开。接着文章使用条件概率公式进一步展开:
这一步很好理解,不再赘述。
对于MJLSs的无记忆特性(理解为指数分布),有以下变换:
.
即:系统变换仅与时间增量有关,与所处时刻无关。
但对于S-MJLSs,该式不成立,因为转移率是时变的,是取决于的函数。这里定义系统从状态
跳跃到状态
的概率为
,当系统保持在模式
时,sojourn-time
的累积分布函数(CDF)为
,从最后一次跳跃开始,停留在模式
的时间为
,重新改写(6)式,得到如下结果:
这里将上边的条件概率展开成两式相乘,即状态跳变的概率乘以两不同时刻CDF的差值(再停留一个时间的概率),CDF是概率直观的表达。在
时刻处于状态
的概率可以理解成停留时间大于等于
的概率,也就是
.
利用一阶近似(泰勒一阶展开),将写为
则可将无穷小生成元写为
其中,由下式表示:
移项,改写为这里主要是为了凑出
和
这两项。
根据分布函数的性质,有:先看后面一项,分子是逗留时间为
与
的概率之差,由于
太小,分子是无穷小,后一项必然为0。前一项相当于分布函数求导后再与分母的有限量作比值,将该项定义为
。
据此将化简为:
在这里引出和
的数学定义:
这里就是转移概率矩阵中各元素的定义了。接着化简:将划红线部分用引理1进行放缩,有
将
以放缩项换元,重新定义
显然,有
。
使用舒尔补[此处为矩阵理论相关知识]将所需证明的转化为以下矩阵形式:
其中,由以下表示:
因此,为了证明以下不等式链成立:
还需证明
存在。将拆成以下两项:
其中,显然,这两项的
均存在,因为
正定且有上界:
.因此,以下两个不等式成立:
表示都为半负定矩阵。所以以下不等式成立:
这就证明了不等式链的正确性。最后,使用广义Dynkin公式,有
移项,即可得到
由(4)中定义的条件,
即得下式对任意均成立:
当有界,则以上不等式左边被右边的正常数所限定。根据最初对S-MJLSs系统随机稳定性的定义,系统是随机稳定的,完成了证明。