【学习笔记】《滑模变结构控制MATLAB仿真基本理论与设计方法》(刘金琨)--第二章(基于趋近律的滑模控制)

本文介绍了滑模控制在工程中的重要性,探讨了趋近律的不同类型,如等速、指数、幂次和一般趋近律,并详细说明了如何根据误差信号和滑模面设计控制器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本章主要介绍滑模控制的工程意义及几种类型的滑模控制。本节具体说明趋近律的选取方式及与其对应的控制律一般设计方法。

一、滑模控制的工程意义

书中是由一个简单的系统误差跟踪引入的,跟踪误差在工程中有重要意义,它反应了系统跟踪轨迹的能力。设系统跟踪误差为e(t),设计滑模函数为:s(t)=ce(t)+\dot{e}(t),这里的设计根据前章介绍的滑模面参数设计。当c>0,就满足Hurwitz条件。

系统处于滑模面上时,s(t)=0,即ce(t)+\dot{e}(t)=0,移项,积分,得:\int_{0}^{t}\frac{1}{e(t)}\dot{e}(t)=\int_{0}^{t}-c\mathbf{d}t,解得e(t)=e(0)\mathrm{exp}(-ct).

这说明,当t趋近无穷大,误差收敛于0,收敛速度由c决定。那么如果设计控制律保证s(t)也是指数收敛到0,误差变化率\dot{e}(t)也将指数收敛到0,整个系统趋于稳定。

二、基于趋近律的滑模控制

由第一章的讨论,滑模运动分为趋近运动,即系统从任意状态趋近于切换面的过程,以及滑模运动,即在切换面上的运动两部分。滑模面的可达性条件仅保证有限时间内运动到切换面,对具体的趋近轨迹未做任何限制。书中介绍一种趋近律的方法,改善趋近运动的动态品质。下面介绍几种典型的趋近律。

1.等速趋近律

\dot{s}=-\varepsilon sgn(s) ,\varepsilon>0

仅从数学形式上看,\varepsilon直接决定了趋近速度,表示趋近速率。若\varepsilon取值较大,趋近自然会加快,但引起的抖振也将增大。

2.指数趋近律

\dot{s}=-\varepsilon sgn(s)-ks ,\varepsilon>0,k>0

其中的-ks就是指数项,因其解会在s(0)后增加一指数项。关于它的分析请参考原文,思路即构造Lypunov函数V=\frac{1}{2}s^{2},把符号函数写成不等式形式,最后得出结论:系统指数收敛到0,收敛速度取决于指数项k。单纯的指数趋近无法保证可达性,故在等速趋近的基础上添加指数项。显然,当s较大时,e^{-ks}也较大,意味着系统以较大的速度趋近滑动模态。为保证快速趋近且削弱抖振,应当在增大k的同时减小\varepsilon

3.幂次趋近律

\dot{s}=-k \left | s \right |^{\alpha }sgn(s) ,k>0,1>\alpha >0

调整\alpha值,可使系统远离滑模面时高速趋近,靠近时降低速度。

4.一般趋近律

\dot{s}=-\varepsilon sgn(s)-f(s) ,\varepsilon>0

需满足f(0)=0,sf(s)>0,s\neq 0。(为保证s\dot{s}<0

三、控制器设计

考虑以下被控对象:

\ddot{\theta }(t)=-f(\theta,t)+bu(t)

fb均已知且b>0.

滑模面选取为s(t)=ce(t)+\dot{e}(t)c>0

将理想信号记为\theta _{d}(t),跟踪误差:e(t)=\theta _{d}(t)-\theta (t),\dot{e(t)}=\dot{\theta _{d}(t)}-\dot{\theta (t)}

对滑模面求导,得 \dot{s}(t)=c\dot{e}(t)+\ddot{e}(t)=c(\dot{\theta _{d}}(t)-\dot{\theta} (t))+(\ddot{\theta }_{d}(t)-\ddot{\theta }(t))

将二阶导用控制律u(t)进行代换,观察到等式右边应该与选取的滑模面相等,移项后得

u(t)=\frac{1}{b}(\varepsilon \mathrm{sgn}s+ks+c(\dot{\theta _{d}}-\dot{\theta })+\ddot{\theta }_{d}+f(\theta ,t)).

以上,我们就完成了针对某个系统的具体滑模面及控制律设计。总结一下,我们首先需要根据误差信号选取合适的滑模面,基于趋近律的滑模控制已做出可达性分析,故具体实践时无需重复证明。接着,对滑模面的具体表达式求导,使其等于设计的滑模面,从联立的等式中解出具体的控制律。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值