本章主要介绍滑模控制的工程意义及几种类型的滑模控制。本节具体说明趋近律的选取方式及与其对应的控制律一般设计方法。
一、滑模控制的工程意义
书中是由一个简单的系统误差跟踪引入的,跟踪误差在工程中有重要意义,它反应了系统跟踪轨迹的能力。设系统跟踪误差为,设计滑模函数为:
,这里的设计根据前章介绍的滑模面参数设计。当
,就满足Hurwitz条件。
系统处于滑模面上时,,即
,移项,积分,得:
,解得
.
这说明,当趋近无穷大,误差收敛于0,收敛速度由
决定。那么如果设计控制律保证
也是指数收敛到0,误差变化率
也将指数收敛到0,整个系统趋于稳定。
二、基于趋近律的滑模控制
由第一章的讨论,滑模运动分为趋近运动,即系统从任意状态趋近于切换面的过程,以及滑模运动,即在切换面上的运动两部分。滑模面的可达性条件仅保证有限时间内运动到切换面,对具体的趋近轨迹未做任何限制。书中介绍一种趋近律的方法,改善趋近运动的动态品质。下面介绍几种典型的趋近律。
1.等速趋近律
仅从数学形式上看,直接决定了趋近速度,表示趋近速率。若
取值较大,趋近自然会加快,但引起的抖振也将增大。
2.指数趋近律
其中的就是指数项,因其解会在
后增加一指数项。关于它的分析请参考原文,思路即构造Lypunov函数
,把符号函数写成不等式形式,最后得出结论:系统指数收敛到0,收敛速度取决于指数项
。单纯的指数趋近无法保证可达性,故在等速趋近的基础上添加指数项。显然,当
较大时,
也较大,意味着系统以较大的速度趋近滑动模态。为保证快速趋近且削弱抖振,应当在增大
的同时减小
。
3.幂次趋近律
调整值,可使系统远离滑模面时高速趋近,靠近时降低速度。
4.一般趋近律
需满足,
。(为保证
)
三、控制器设计
考虑以下被控对象:
和
均已知且
.
滑模面选取为,
。
将理想信号记为,跟踪误差:
对滑模面求导,得
将二阶导用控制律进行代换,观察到等式右边应该与选取的滑模面相等,移项后得
.
以上,我们就完成了针对某个系统的具体滑模面及控制律设计。总结一下,我们首先需要根据误差信号选取合适的滑模面,基于趋近律的滑模控制已做出可达性分析,故具体实践时无需重复证明。接着,对滑模面的具体表达式求导,使其等于设计的滑模面,从联立的等式中解出具体的控制律。