复变函数题目(持续更新)

前言

   读者必读:本篇文章主要内容:本人回顾之前学习的复变函数,看到几个比较有趣、重要的题目,分享一下解题思路,就当复习知识。(本来是要把数值分析的几个实验都写完的,但是之前学习过程中遇到这几个好题目感觉要记下来就多了这篇文章,如果还有很好的题目我还会再往这里面添加。)
  接下来,继续更新之前数值分析实验的东西,中间也会夹杂几个专业实习的内容。

1. 级数题目

  题目1:设函数 f ( z ) f\left(z\right) f(z)在圆域 ∣ z ∣ < R \left|z\right|<R z<R内解析, S n = ∑ k = 0 n f ( k ) ( 0 ) k ! z k S_n=\sum_{k=0}^n\frac{f^{\left(k\right)}\left(0\right)}{k!}z^k Sn=k=0nk!f(k)(0)zk 试证
  (1) S n ( z ) = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ξ n + 1 − z n + 1 ξ − z d ξ ξ n + 1        ( ∣ z ∣ < r < R ) S_n\left(z\right)=\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}f\left(\xi\right)\frac{\xi^{n+1}-z^{n+1}}{\xi-z}\frac{d\xi}{\xi^{n+1}}\;\;\;\left(\left|z\right|<r<R\right) Sn(z)=2πi1ξ=rf(ξ)ξzξn+1zn+1ξn+1dξ(z<r<R)
  (2) f ( z ) − S n ( z ) = z n + 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ξ n + 1 ( ξ − z ) d ξ        ( ∣ z ∣ < r < R ) f\left(z\right)-S_n\left(z\right)=\frac{z^{n+1}}{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\xi^{n+1}\left(\xi-z\right)}d\xi\;\;\;\left(\left|z\right|<r<R\right) f(z)Sn(z)=2πizn+1ξ=rξn+1(ξz)f(ξ)dξ(z<r<R)
证明如下:

  (1)利用n阶导数公式: f ( n ) ( z 0 ) n ! = 1 2 π i ∮ C f ( ξ ) ( ξ − z 0 ) n + 1 d ξ          ( n = 1 , 2 , ⋯   ) \frac{f^{\left(n\right)}\left(z_0\right)}{n!}=\frac1{2\pi i}\oint\limits_C\frac{f\left(\xi\right)}{\left(\xi-z_0\right)^{n+1}}d\xi\;\;\;\;\left(n=1,2,\cdots\right) n!f(n)(z0)=2πi1C(ξz0)n+1f(ξ)dξ(n=1,2,)  可以得到: f ( k ) ( 0 ) k ! = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ( ξ − 0 ) n + 1 d ξ \frac{f^{\left(k\right)}\left(0\right)}{k!}=\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\left(\xi-0\right)^{n+1}}d\xi k!f(k)(0)=2πi1ξ=r(ξ0)n+1f(ξ)dξ  代入 S n S_n Sn: S n ( z ) = ∑ k = 0 n f ( k ) ( 0 ) k ! z k                            = ∑ k = 0 n z k 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ξ n + 1 d ξ                                        = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ξ n + 1 ∑ k = 0 n z k    d ξ                                                        = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ξ ∑ k = 0 n ( z ξ ) k    d ξ                                                                                                              = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ( ξ n + 1 − z n + 1 ) ξ n + 1 ( ξ − z ) d ξ      ( ∣ z ∣ < r < R ) S_n\left(z\right)=\sum_{k=0}^n\frac{f^{\left(k\right)}\left(0\right)}{k!}z^k\\{}^{}\\\;\;\;\;\;\;\;\;\;\;\;\;\;=\sum_{k=0}^n\frac{z^k}{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\xi^{n+1}}d\xi\\{}^{}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\xi^{n+1}}\sum_{k=0}^nz^k\;d\xi\\{}^{}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}\xi\sum_{k=0}^n\left(\frac z\xi\right)^k\;d\xi\\{}^{}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)\left(\xi^{n+1}-z^{n+1}\right)}{\xi^{n+1}\left(\xi-z\right)}d\xi\;\;\left(\left|z\right|<r<R\right) Sn(z)=k=0nk!f(k)(0)zk=k=0n2πizkξ=rξn+1f(ξ)dξ=2πi1ξ=rξn+1f(ξ)k=0nzkdξ=2πi1ξ=rξf(ξ)k=0n(ξz)kdξ=2πi1ξ=rξn+1(ξz)f(ξ)(ξn+1zn+1)dξ(z<r<R)
  注意:其中利用高中学习的等比数列就可以得到 ∑ k = 0 n ( z ξ ) k = ( 1 − ( z ξ ) n + 1 ) 1 − z ξ = ( ξ n + 1 − z n + 1 ) ξ n ( ξ − z ) \sum_{k=0}^n\left(\frac z\xi\right)^k=\frac{\left(1-\left(\frac z\xi\right)^{n+1}\right)}{1-\frac z\xi}=\frac{\left(\xi^{n+1}-z^{n+1}\right)}{\xi^n\left(\xi-z\right)} k=0n(ξz)k=1ξz(1(ξz)n+1)=ξn(ξz)(ξn+1zn+1)

  (2)利用柯西积分公式: f ( z ) = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ( ξ − z ) d ξ f\left(z\right)=\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\left(\xi-z\right)}d\xi f(z)=2πi1ξ=r(ξz)f(ξ)dξ
  结合第一问的证明: f ( z ) − S n ( z ) = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ( ξ − z ) d ξ − 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ( ξ n + 1 − z n + 1 ) ξ n + 1 ( ξ − z ) d ξ = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) z n + 1 ξ n + 1 ( ξ − z ) d ξ                  = z n + 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) ξ n + 1 ( ξ − z )    d ξ      ( ∣ z ∣ < r < R ) f\left(z\right)-S_n\left(z\right)=\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\left(\xi-z\right)}d\xi-\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)\left(\xi^{n+1}-z^{n+1}\right)}{\xi^{n+1}\left(\xi-z\right)}d\xi\\{}^{}\\=\frac1{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)z^{n+1}}{\xi^{n+1}\left(\xi-z\right)}d\xi\\{{}}_{}\\\;\;\;\;\;\;\;\;=\frac{z^{n+1}}{2\pi i}\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\xi^{n+1}\left(\xi-z\right)}\;d\xi\;\;\left(\left|z\right|<r<R\right) f(z)Sn(z)=2πi1ξ=r(ξz)f(ξ)dξ2πi1ξ=rξn+1(ξz)f(ξ)(ξn+1zn+1)dξ=2πi1ξ=rξn+1(ξz)f(ξ)zn+1dξ=2πizn+1ξ=rξn+1(ξz)f(ξ)dξ(z<r<R)
  总结这样证明结束了,主要是要学会熟练运用高阶导数公式和级数的计算。
  
  
  题目2:设 f ( z ) = ∑ n = 0 ∞ a n z n ( ∣ z ∣ < R 1 ) , g ( z ) = ∑ n = 0 ∞ b n z n ( ∣ z ∣ < R 2 ) f\left(z\right)=\sum_{n=0}^\infty a_nz^n\left(\left|z\right|<R_1\right),g\left(z\right)=\sum_{n=0}^\infty b_nz^n\left(\left|z\right|<R_2\right) f(z)=n=0anzn(z<R1),g(z)=n=0bnzn(z<R2) ,则对任意的 r ( 0 < r < R 1 ) r\left(0<r<R_1\right) r(0<r<R1) ,在 ∣ z ∣ < r R 2 \left|z\right|<rR_2 z<rR2 ∑ n = 0 ∞ a n b n z n = 1 2 π i ∮ ∣ ξ ∣ = r f ( ξ ) g ( z ξ ) d ξ ξ \sum_{n=0}^\infty a_nb_nz^n=\frac1{2\mathrm{πi}}\oint\limits_{\left|\xi\right|=r}f\left(\xi\right)g\left(\frac z\xi\right)\frac{d\xi}\xi n=0anbnzn=2πi1ξ=rf(ξ)g(ξz)ξdξ
证明如下:

  利用洛朗系数公式,这里可以得到 a n = ∮ ∣ ξ ∣ = r f ( ξ ) ξ n + 1 d ξ a_n=\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\xi^{n+1}}d\xi an=ξ=rξn+1f(ξ)dξ
  再由题目可以知道 g ( z ξ ) = ∑ n = 0 ∞ ( z n ξ n b n ) g\left(\frac z\xi\right)=\sum_{n=0}^\infty\left(\frac{z^n}{\xi^n}b_n\right) g(ξz)=n=0(ξnznbn)
  将 a n a_n an代入原式中: ∑ n = 0 ∞ a n b n z n = ∑ n = 0 ∞ ∮ ∣ ξ ∣ = r f ( ξ ) ξ n + 1 d ξ ⋅ b n z n                                               = ∮ ∣ ξ ∣ = r ∑ n = 0 ∞ ( f ( ξ ) ξ n + 1 b n z n ) d ξ                                                       = ∮ ∣ ξ ∣ = r f ( ξ ) ∑ n = 0 ∞ ( z n ξ n + 1 b n ) d ξ                                                   = ∮ ∣ ξ ∣ = r f ( ξ ) ξ ∑ n = 0 ∞ ( z n ξ n b n ) d ξ                               = ∮ ∣ ξ ∣ = r f ( ξ ) ξ g ( z ξ ) d ξ \sum_{n=0}^\infty a_nb_nz^n=\sum_{n=0}^\infty\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}{\xi^{n+1}}d\xi\cdot b_nz^n\\\;\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\oint\limits_{\left|\xi\right|=r}\sum_{n=0}^\infty\left(\frac{f\left(\xi\right)}{\xi^{n+1}}b_nz^n\right)d\xi\\\;\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\oint\limits_{\left|\xi\right|=r}f\left(\xi\right)\sum_{n=0}^\infty\left(\frac{z^n}{\xi^{n+1}}b_n\right)d\xi\\\;\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}\xi\sum_{n=0}^\infty\left(\frac{z^n}{\xi^n}b_n\right)d\xi\\\;\\\;\;\;\;\;\;\;\;\;\;\;\;\;=\oint\limits_{\left|\xi\right|=r}\frac{f\left(\xi\right)}\xi g\left(\frac z\xi\right)d\xi n=0anbnzn=n=0ξ=rξn+1f(ξ)dξbnzn=ξ=rn=0(ξn+1f(ξ)bnzn)dξ=ξ=rf(ξ)n=0(ξn+1znbn)dξ=ξ=rξf(ξ)n=0(ξnznbn)dξ=ξ=rξf(ξ)g(ξz)dξ
  总结这样证明结束了,主要是要学会熟练运用洛朗系数和级数的计算。
  

2.留数题目

  题目1:计算积分 ∮ ∣ z ∣ = 1 4 z sin ⁡ z ( e z − 1 − z ) 2 d z \oint\limits_{\left|z\right|=\frac14}\frac{z\sin z}{\left(e^z-1-z\right)^2}dz z=41(ez1z)2zsinzdz
证明如下:

  ① 对于利用留数定理计算积分,首先单独观察被积函数是否存在极点。在这一眼可以看出被积函数存在极点且为 z = 0 z = 0 z=0,但是很难看出 z = 0 z = 0 z=0为几级极点。
  
  ② 很显然利用定义法很难判断为几级极点,这里利用其中(个人觉得最好的判断方法)
  
  定理:如果 z 0 z_0 z0 f ( z ) f(z) f(z) m m m级极点,那么 1 f ( z ) \frac{1}{{f\left( z \right)}} f(z)1 m m m级零点。即: f ( z ) = 1 ( z − z 0 ) m g ( z ) , ( g ( z 0 ) ≠ 0 ) f(z) = \frac{1}{{{{(z - {z_0})}^m}}}g(z),(g({z_0}) \ne 0) f(z)=(zz0)m1g(z),(g(z0)=0)
  ③ 对被积函数分子,分母进行各自Taylor展开: f ( z ) = z sin ⁡ z ( e z − 1 − z ) 2 ≈ z ( z − z 3 3 ! + z 5 5 ! − ⋯ ) ( z 2 2 ! + z 3 3 ! + ⋯ ) 2                                       = z 2 ( 1 − z 2 3 ! + z 4 5 ! − ⋯ ) z 4 ( 1 2 ! + z 3 ! + ⋯ ) 2 = ( 1 − z 2 3 ! + z 4 5 ! − ⋯ ) z 2 ( 1 2 ! + z 3 ! + ⋯ ) 2    = 1 z 2 ( 1 − z 2 3 ! + z 4 5 ! − ⋯ ) ( 1 2 ! + z 3 ! + ⋯ ) 2                                  f\left( z \right) = \frac{{z\sin z}}{{{{\left( {{e^z} - 1 - z} \right)}^2}}} \approx \frac{{z\left( {z - \frac{{{z^3}}}{{3!}} + \frac{{{z^5}}}{{5!}} -\cdots } \right)}}{{{{\left( {\frac{{{z^2}}}{{2!}} + \frac{{{z^3}}}{{3!}} + \cdots } \right)}^2}}}\\\;\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ = \frac{{{z^2}\left( {1 - \frac{{{z^2}}}{{3!}} + \frac{{{z^4}}}{{5!}} - \cdots} \right)}}{{{z^4}{{\left( {\frac{1}{{2!}} + \frac{z}{{3!}} + \cdots } \right)}^2}}} = \frac{{\left( {1 - \frac{{{z^2}}}{{3!}} + \frac{{{z^4}}}{{5!}} - \cdots} \right)}}{{{z^2}{{\left( {\frac{1}{{2!}} + \frac{z}{{3!}} + \cdots } \right)}^2}}}\\\;\\\\ = \frac{1}{{{z^2}}}\frac{{\left( {1 - \frac{{{z^2}}}{{3!}} + \frac{{{z^4}}}{{5!}} -\cdots } \right)}}{{{{\left( {\frac{1}{{2!}} + \frac{z}{{3!}} + \cdots } \right)}^2}}} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; f(z)=(ez1z)2zsinz(2!z2+3!z3+)2z(z3!z3+5!z5) =z4(2!1+3!z+)2z2(13!z2+5!z4)=z2(2!1+3!z+)2(13!z2+5!z4)=z21(2!1+3!z+)2(13!z2+5!z4)  令: g ( z ) = ( 1 − z 2 3 ! + z 4 5 ! − ) ( 1 2 ! + z 3 ! + ⋯ ) 2 {g\left( z \right) = \frac{{\left( {1 - \frac{{{z^2}}}{{3!}} + \frac{{{z^4}}}{{5!}} - } \right)}}{{{{\left( {\frac{1}{{2!}} + \frac{z}{{3!}} + \cdots } \right)}^2}}}} g(z)=(2!1+3!z+)2(13!z2+5!z4)  可以一眼看出: z = 0 , g ( z ) ≠ 0 , z = 0 z = 0,g\left( z \right) \ne 0,z = 0 z=0,g(z)=0z=0二级极点
  
  ④ 原式: ∮ ∣ z ∣ = 1 4 z sin ⁡ z ( e z − 1 − z ) 2 d z    = 2 π i ⋅ R e s [ z sin ⁡ z ( e z − 1 − z ) 2 , 0 ]    = 2 π i ⋅ lim ⁡ z → 0 d d z ( z sin ⁡ z ( e z − 1 − z ) 2 z 2 )    = 2 π i ⋅ lim ⁡ z → 0 3 z 2 sin ⁡ z ( e z − 1 − z ) + z 3 cos ⁡ z ( e z − 1 − z ) − 2 z 3 sin ⁡ z ( e z − 1 ) ( e z − 1 − z ) 3    = 2 π i ⋅ lim ⁡ z → 0 3 z 3 ( z 2 2 ! + z 3 3 ! ) + z 3 ( z 2 2 ! + z 3 3 ! ) − 2 z 4 ( z + z 2 2 ! ) ( z 2 2 ! ) 3    = 2 π i ⋅ lim ⁡ z → 0 4 z 3 ( z 2 2 ! + z 3 3 ! ) − 2 z 4 ( z + z 2 2 ! ) ( z 2 2 ! ) 3    = 2 π i ⋅ lim ⁡ z → 0 4 z 3 ( z 3 3 ! ) − 2 z 4 ( z 2 2 ! ) ( z 2 2 ! ) 3    = 2 π i ⋅ lim ⁡ z → 0 2 3 − 1 1 8 = − 16 3 π i \begin{array}{l} \oint\limits_{\left| z \right| = \frac{1}{4}} {\frac{{z\sin z}}{{{{\left( {{e^z} - 1 - z} \right)}^2}}}} dz\\\;\\ = 2\pi i \cdot {\mathop{\rm Re}\nolimits} s\left[ {\frac{{z\sin z}}{{{{\left( {{e^z} - 1 - z} \right)}^2}}},0} \right]\\\;\\ = 2\pi i \cdot \mathop {\lim }\limits_{z \to 0} \frac{d}{{dz}}\left( {\frac{{z\sin z}}{{{{\left( {{e^z} - 1 - z} \right)}^2}}}{z^2}} \right)\\\;\\ = 2\pi i \cdot \mathop {\lim }\limits_{z \to 0} \frac{{3{z^2}\sin z\left( {{e^z} - 1 - z} \right) + {z^3}\cos z\left( {{e^z} - 1 - z} \right) - 2{z^3}\sin z\left( {{e^z} - 1} \right)}}{{{{\left( {{e^z} - 1 - z} \right)}^3}}}\\\;\\ = 2\pi i \cdot \mathop {\lim }\limits_{z \to 0} \frac{{3{z^3}\left( {\frac{{{z^2}}}{{2!}} + \frac{{{z^3}}}{{3!}}} \right) + {z^3}\left( {\frac{{{z^2}}}{{2!}} + \frac{{{z^3}}}{{3!}}} \right) - 2{z^4}\left( {z + \frac{{{z^2}}}{{2!}}} \right)}}{{{{\left( {\frac{{{z^2}}}{{2!}}} \right)}^3}}}\\\;\\ = 2\pi i \cdot \mathop {\lim }\limits_{z \to 0} \frac{{4{z^3}\left( {\frac{{{z^2}}}{{2!}} + \frac{{{z^3}}}{{3!}}} \right) - 2{z^4}\left( {z + \frac{{{z^2}}}{{2!}}} \right)}}{{{{\left( {\frac{{{z^2}}}{{2!}}} \right)}^3}}}\\\;\\ = 2\pi i \cdot \mathop {\lim }\limits_{z \to 0} \frac{{4{z^3}\left( {\frac{{{z^3}}}{{3!}}} \right) - 2{z^4}\left( {\frac{{{z^2}}}{{2!}}} \right)}}{{{{\left( {\frac{{{z^2}}}{{2!}}} \right)}^3}}}\\\;\\ =2\pi i \cdot \mathop {\lim }\limits_{z \to 0} \frac{{\frac{2}{3} - 1}}{{\frac{1}{8}}} = - \frac{{16}}{3}\pi i \end{array} z=41(ez1z)2zsinzdz=2πiRes[(ez1z)2zsinz,0]=2πiz0limdzd((ez1z)2zsinzz2)=2πiz0lim(ez1z)33z2sinz(ez1z)+z3cosz(ez1z)2z3sinz(ez1)=2πiz0lim(2!z2)33z3(2!z2+3!z3)+z3(2!z2+3!z3)2z4(z+2!z2)=2πiz0lim(2!z2)34z3(2!z2+3!z3)2z4(z+2!z2)=2πiz0lim(2!z2)34z3(3!z3)2z4(2!z2)=2πiz0lim81321=316πi
注意:第三步求极限中将 sin ⁡ z ∼ z {\sin z}\sim z sinzz 学过高数的都应该知道等价无穷小,如果忘了等价无穷小可以把高数的书再回忆一下。
  
总结:
  求很复杂的极限的时候合理利用等价无穷小洛必塔Taylor展开是解决一道极限题最好的方法。很多人一看到了上式中的 0 0 \frac{0}{0} 00 的极限第一反应会选择洛必塔法(万式皆可洛必塔,万能法),偶尔会遇到分子和分母求完导数会越来越复杂,其实求极限就是越来越简化直到简化到自己能够一眼看出极限答案,充分综合利用上面的三种方法解决极限题必将事半功倍。
   这道题有两个重点,一个是要学会如何正确判断被积函数的极点,另一个是求留数定理,在求留数的过程中一定会遇到求极限的,求极限不是复变函数的重点,极限不会或者忘记的话还是把大一学习的高数或者数分回顾。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值